这篇文章主要讲解了"蟒蛇爬虫数据操作的技巧有哪些",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"蟒蛇爬虫数据操作的技巧有哪些"吧!
需求
爬取某网站的项目列表页,获取其url,标题等信息,作为后续爬取详情页的任务url。
代码
#-*-编码: utf-8-*-# @时间:2019-11-0814:04 # @作者: cxa # @文件: motor _ helper。py # @ software : pycharimportsynciimportdatetime frologruimporttlogerfromotor。motor _ asynciomimportatasynciomontrolclientfromcollectionimporttry 3360 importuvloopasyncioeventulooppolicy())异常错误: passdb _ configs={ ' host ' : ' 127。0 .0 .1 ','端口' :'27017 ',' db_name':'mafengwo ','用户' : ' ' }类电机运行: def _ _ init _ _(self): self .__格言_ _ .如果是自己,则更新(* * db _ configs)。用户:自我。motor _ uri=f ' MongoDB :/{ self。用户} : {自我。passwd } @ { self。主机} : {自我。port }/{ self。db _ name }?authSource={ self。db _ name } ' else : self。motor _ uri=f ' MongoDB :/{ self。主机} : {自我。port }/{ self。db _ name } ' self。客户端=AsyncIOMotorClient(self。motor _ uri)self。MB=自我。客户[自我。db _ name]asyncdefsave _ data _ with _ status(self,items,col=' seed _ data ')3360 for iteminbsp
;items: data = dict() data["update_time"] = datetime.datetime.now() data["status"] = 0 # 0初始 data.update(item) print("data", data) await self.mb[col].update_one({ "url": item.get("url")}, {'$set': data, '$setOnInsert': {'create_time': datetime.datetime.now()}}, upsert=True) async def add_index(self, col="seed_data"): # 添加索引 await self.mb[col].create_index('url')
因为我的爬虫是异步网络模块aiohttp写的,所以选择了pymongo的异步版本motor进行操作。
异步代码的基本属性就是async/await成对的出现,如果把上面的await和async去掉,就是类似pymongo的写法了,这里异步不是重点,重点是我们怎么处理每条数据。
这里除了网页的url,标题等信息,我需要附加3个字段。分别是create_time, status,update_time。
这三个字段分别代表,数据插入数据,状态和更新时间。
那么我为什么添加三个字段呢?
首先,我们需要判断每次的任务数据是否存在,我这里的情况是存在就更新不存在就插入,那么我就需要一个查询条件,作为更新的条件,很显然这里可以使用任务的url作为唯一条件(你还可以使用url+标题做个md5然后保存),好了查询条件确定。
下面说create_time这个比较好理解就是数据插入时间,关键是为什么还要一个update_time,这个的话和status字段有一定的关系。画重点:这个status作为后续爬虫进行爬取的一个标志用。目前这个status有4个值,0-4,我这是这样定义的,
0:初始状态
1:抓取中的任务
2:抓取成功
3:抓取失败
4:抓取成功但是没有匹配到任务。
后面随着任务的爬取,状态也是不断变化的,同时我们需要更新update_time为最新的时间。这个目前的话是体现不出来什么作用,它的使用场景是,重复任务的抓取,比如今天我抓取了任务列表里的url1、url2,第二天的时候我如果再抓到,为了区分是抓取失败还是抓取成功,我们根据create_time和update_time就可以进行推断了,如果两者相同而且是当前的日期说明刚抓的,如果update_time的日期比create_time新可以说明,抓到了重复的任务。关于字段的设计就啰嗦这么些。
下面是实现,我们可以通过update_one方法,对数据作存在或者插入操作,因为url作为查询条件,后面量大的话就最好添加一个索引。也就是上面的 add_index方法。
好了最好说插入更新的具体代码
需要注意的是
{'$set': data, '$setOnInsert': {'create_time': datetime.datetime.now()}}
$setOnInsert里面使用的字段是数据不存在的时候才插入的,存在就不动了,只插入$set里面指定的。
另外$setOnInsert里面使用的字段不能在$set里面再次出现
upsert=True代表的是不存在就插入。
感谢各位的阅读,以上就是“Python爬虫数据操作的技巧有哪些”的内容了,经过本文的学习后,相信大家对Python爬虫数据操作的技巧有哪些这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!
内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/106529.html