图联通性问题,Tarjan)整理

技术图联通性问题,Tarjan)整理 图联通性问题(Tarjan)整理笑死,根本学不会笑死,根本学不会。(烂尾力
Tarjan算法是用于处理图连通性相关的一类算法。
1、强连通分量、双连通分量、割点与桥

图连通的塔尔詹问题的安排

笑,你根本学不会。

笑,你根本学不会。(无穷尾力)

Tarjan算法是一种用于处理图连通性的算法。

1、强连通分量、双连通分量、割点与桥的定义

参见OI维基

2、Tarjan算法的基本思想与框架

本质上,这些与连通性相关的量是通过构造dfs生成树,然后处理非树边而获得的。

dfs生成树的标记是通过dfn顺序(dfs是从某一点按顺序构造的),需要一个低值来处理非树边(看子树的树边或者最多看子树的一个非树边就可以到达dfn值最小的点)。

void tarjan(int x)

{

low[x]=dfn[x]=num;

for(int I=H[x];我;i=K[i])

{

int y=V[I];

if(!dfn[y])

tarjan(y,I),低[x]=min(低[x],低[y]);

其他

low[x]=min(low[x],dfn[y]);

}

}

3、强连通分量

非树边缘有三种:后边缘、交叉边缘和前边缘。

正面对答案没有贡献,不讨论。

边必须有贡献,并且满足低值的条件,并且更新到低。

只有当交叉边指向祖先可以返回dfs树的点时,它才能有所贡献。

综上所述,我们可以用一个栈记录一些节点,这些节点要么是当前点的祖先,要么可以到达祖先。

每个dfs到达时,节点都被放入堆栈。

不在堆栈中的节点不能更新低值,因为这些点不能返回祖先,也不能贡献。

当有一个点\(dfn(x)=low(x)\)时,意味着根为x的子树构成强连通分量,从这个点不能到达祖先节点,所以x及其上面的节点不堆叠,算作强连通分量。

void tarjan(int x)

{

low[x]=dfn[x]=num;

st[ top]=x,ins[x]=1;

for(int I=H[x];我;i=K[i])

{

int y=V[I];

if(!dfn[y])

tarjan(y),低[x]=min(低[x],低[y]);

否则如果(ins[y])

low[x]=min(low[x],dfn[y]);

}

if(dfn[x]==低[x])

{

碳纳米管;

for(;st[top]!=x;)

{

bl[st[top]]=cnt,a2[CNT]=a[ST[top]];

ins[st[top]]=0,-top;

}

bl[x]=cnt,a2[CNT]=a[x];

ins[x]=0,-top;

}

}

//在main中

for(int x=1;x=n;十)

if(!dfn[x])tar Jan(x);

4、桥与边双连通分量

\(dfn(x)低(y)\)

void tarjan(int x,int in_e)

{

low[x]=dfn[x]=num;

for(int I=H[x];我;i=K[i])

{

int y=V[I];

if(!dfn[y])

{

tarjan(y,I),低[x]=min(低[x],低[y]);

if(低[y]dfn[x])

{

int u=v[i],v=v[i^1];

if(uv)交换(u,v);

bdg.push_back(mkp(u,v));

}

}

否则如果(我!=(in_e^1)

low[x]=min(low[x],dfn[y]);

}

}

//在main中

for(int x=1;x=n;十)

if(!dfn[x]) tarjan(x,-1);

5、割点与点双连通分量

\(dfn(x) \leq low(y)\)

请注意,根节点需要两个满足条件的\(y\)。

void tarjan(int x,int rt)

{

low[x]=dfn[x]=num;

int标志=0;

for(int I=H[x];我;i=K[i])

{

int y=V[I];

if(!dfn[y])

{

tarjan(y,rt),低[x]=min(低[x],低[y]);

if(低[y]=dfn[x])

{

旗帜;

if(x!=rt | | flag 1)cut[x]=1;

}

}

其他

low[x]=min(low[x],dfn[y]);

}

}

内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/107443.html

(0)

相关推荐

  • jstack怎么分析线程状态(jstack查看线程卡住情况)

    技术如何通过top 和 jstack 确定哪些线程耗尽CPU本篇文章给大家分享的是有关如何通过top 和 jstack 确定哪些线程耗尽CPU,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,

    攻略 2021年12月13日
  • 如何搭建Fabric2.0环境

    技术如何搭建Fabric2.0环境小编给大家分享一下如何搭建Fabric2.0环境,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1.1 环境资

    攻略 2021年11月19日
  • MySQL Explain的作用是什么

    技术MySQL Explain的作用是什么本篇内容介绍了“MySQL Explain的作用是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔

    攻略 2021年10月20日
  • C#打印源码的具体实现是怎样的

    技术C#打印源码的具体实现是怎样的本篇文章给大家分享的是有关C#打印源码的具体实现是怎样的,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。C#打印源码也是打印

    攻略 2021年11月24日
  • Dynamic Batching不生效该怎么办

    技术Dynamic Batching不生效该怎么办Dynamic Batching不生效该怎么办,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。最近在项目开发

    攻略 2021年11月16日
  • ubuntu中如何添加windows工作组下的共享打印机

    技术ubuntu中如何添加windows工作组下的共享打印机这篇文章主要为大家展示了“ubuntu中如何添加windows工作组下的共享打印机”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研

    攻略 2021年11月15日