HashMap和HashTable的区别以及常见面试题是什么

技术HashMap和HashTable的区别以及常见面试题是什么本篇文章为大家展示了HashMap和HashTable的区别以及常见面试题是什么,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你

本文向您展示了HashMap和HashTable的区别以及常见的面试问题。内容简洁易懂,一定会让你大放异彩。希望通过这篇文章的详细介绍,你能有所收获。

HashMap

HashMap也是我们经常使用的一个集合。它是基于哈希表的Map接口的实现,以键值的形式存在。在HashMap中,键值总是会被作为一个整体来对待,键值的存储位置会由系统根据哈希算法来计算,所以我们总是可以通过键值快速保存和检索值。我们来分析一下HashMap的访问。

定义

HashMap实现了Map接口,继承了AbstractMap。映射接口定义了键映射到值的规则,而抽象映射类提供了映射接口的主干实现,以最小化实现该接口所需的工作。其实AbstractMap类已经实现了Map,在这里标注Map LZ应该会更清晰!

publicclassHashMapK,V

extendsAbstractMapK,V

实现MAPK、V、可克隆、可序列化

构造函数

Hashmap提供三种构造函数:

HashMap():构造一个空HashMap,默认初始容量(16)和默认加载因子(0.75)。

哈希表(初始容量):用指定的初始容量和默认加载因子(0.75)构建一个空的哈希表。

Hashmap(初始容量,浮动负载系数):用指定的初始容量和负载系数构建一个空HashMap。这里提到两个参数:初始容量和负载系数。

这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中的桶数,初始容量是创建哈希表时的容量,加载因子是衡量哈希表在容量自动增加之前可以有多满,它衡量的是一个哈希表空间的使用程度。加载因子越大,哈希表的加载程度越高,反之亦然。

对于使用链表方法的哈希表,平均查找一个元素的时间为O(1 a),因此如果加载因子较大,空间将被充分利用,但结果将是搜索效率的下降。如果加载因子太小,哈希表中的数据会过于稀疏,造成严重的空间浪费。系统默认的负载系数是0.75,正常情况下我们不需要修改。

HashMap是一种支持快速访问的数据结构。要了解它的性能,我们必须了解它的数据结构。

数据结构

我们知道Java中最常用的两种结构是数组和模拟指针(reference),几乎所有的数据结构都可以通过组合这两种结构来实现,还有HashMap。其实HashMap是一个“链表哈希”,它的数据结构如下:

HashMap数据结构图

下图中表格数组的每个网格都是一个桶。负载系数是地图中元素所占容量的百分比。例如,当装载系数为0.75,初始容量(桶数)为16时,则允许装载的最大元素数为16*0.75=12,该最大数量也成为阈值,即地图中定义的阈值。当超过该阈值时,地图将自动扩展其容量。

00-1010首先,我们来看看源代码。

publicVput(Kkey,v value){ 0

//当键为null时,调用putForNullKey方法保存null和表的第一个位置,这就是HashMap允许null的原因。

不间断空格

;      if (key == null)
            return putForNullKey(value);
        //计算key的hash值,此处对原来元素的hashcode进行了再次hash
        int hash = hash(key.hashCode());                  ------(1)
        //计算key hash 值在 table 数组中的位置
        int i = indexFor(hash, table.length);             ------(2)
        //从i出开始迭代 e,找到 key 保存的位置
        for (Entry<K, V> e = table[i]; e != null; e = e.next) {
            Object k;
            //判断该条链上是否有hash值相同的(key相同)
            //若存在相同,则直接覆盖value,返回旧value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;    //旧值 = 新值
                e.value = value;
                e.recordAccess(this);
                return oldValue;     //返回旧值
            }
        }
        //修改次数增加1
        modCount++;
        //将key、value添加至i位置处
        addEntry(hash, key, value, i);
        return null;
    }

通过源码我们可以清晰看到HashMap保存数据的过程为:首先判断key是否为null,若为null,则直接调用putForNullKey方法。

若不为空则先计算key的hash值,然后根据hash值搜索在table数组中的索引位置,如果table数组在该位置处有元素,则通过比较是否存在相同的key,若存在则覆盖原来key的value,==否则将该元素保存在链头(最先保存的元素放在链尾)==。

若table在该处没有元素,则直接保存。这个过程看似比较简单,其实深有内幕。有如下几点:

1、 先看迭代处。此处迭代原因就是为了防止存在相同的key值,若发现两个hash值(key)相同时,HashMap的处理方式是用新value替换旧value,这里并没有处理key,这就解释了HashMap中没有两个相同的key。

2、 在看(1)、(2)处。这里是HashMap的精华所在。首先是hash方法,该方法为一个纯粹的数学计算,就是计算h的hash值。

static int hash(int h) {
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }

我们知道对于HashMap的table而言,数据分布需要均匀(最好每项都只有一个元素,这样就可以直接找到),不能太紧也不能太松,太紧会导致查询速度慢,太松则浪费空间。计算hash值后,怎么才能保证table元素分布均与呢?我们会想到取模,但是由于取模的消耗较大,HashMap是这样处理的:调用indexFor方法。

static int indexFor(int h, int length) {
        return h & (length-1);
    }

HashMap的底层数组长度总是2的n次方,在构造函数中存在:capacity <<= 1;这样做总是能够保证HashMap的底层数组长度为2的n次方。当length为2的n次方时,h&(length - 1)就相当于对length取模,而且速度比直接取模快得多,这是HashMap在速度上的一个优化。至于为什么是2的n次方下面解释。

==对length取模来得到hash是常用的hash索引方法,这里采用位运算的话效率更高。==

我们回到indexFor方法,该方法仅有一条语句:h&(length - 1),这句话除了上面的取模运算外还有一个非常重要的责任:均匀分布table数据和充分利用空间。

这里我们假设length为16(2^n)和15,h为5、6、7。

当n=15时,6和7的结果一样,这样表示他们在table存储的位置是相同的,也就是产生了碰撞,6、7就会在一个位置形成链表,这样就会导致查询速度降低。诚然这里只分析三个数字不是很多,那么我们就看0-15。

而当length = 16时,length – 1 = 15 即1111,那么进行低位&运算时,值总是与原来hash值相同,而进行高位运算时,其值等于其低位值。所以说当length = 2^n时,不同的hash值发生碰撞的概率比较小,这样就会使得数据在table数组中分布较均匀,查询速度也较快。

这里我们再来复习put的流程:当我们想一个HashMap中添加一对key-value时,系统首先会计算key的hash值,然后根据hash值确认在table中存储的位置。若该位置没有元素,则直接插入。否则迭代该处元素链表并依此比较其key的hash值。

如果两个hash值相等且key值相等(e.hash == hash && ((k = e.key) == key || key.equals(k))),则用新的Entry的value覆盖原来节点的value。如果两个hash值相等但key值不等 ,则将该节点插入该链表的链头。具体的实现过程见addEntry方法,如下:

void addEntry(int hash, K key, V value, int bucketIndex) {
        //获取bucketIndex处的Entry
        Entry<K, V> e = table[bucketIndex];
        //将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry 
        table[bucketIndex] = new Entry<K, V>(hash, key, value, e);
        //若HashMap中元素的个数超过极限了,则容量扩大两倍
        if (size++ >= threshold)
            resize(2 * table.length);
    }

这个方法中有两点需要注意:

后面添加的entry反而会接到前面。

一、是链的产生。

这是一个非常优雅的设计。系统总是将新的Entry对象添加到bucketIndex处。如果bucketIndex处已经有了对象,那么新添加的Entry对象将指向原有的Entry对象,形成一条Entry链,但是若bucketIndex处没有Entry对象,也就是e==null,那么新添加的Entry对象指向null,也就不会产生Entry链了。

二、扩容问题。

随着HashMap中元素的数量越来越多,发生碰撞的概率就越来越大,所产生的链表长度就会越来越长,这样势必会影响HashMap的速度,为了保证HashMap的效率,系统必须要在某个临界点进行扩容处理。

该临界点在当HashMap中元素的数量等于table数组长度*加载因子。但是扩容是一个非常耗时的过程,因为它需要重新计算这些数据在新table数组中的位置并进行复制处理。所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提升HashMap的性能。

JDK1.8的hashmap:put方法

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
                //如果p是红黑树节点,则用另外的处理方法
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        //当链表节点数超过8个,则直接进行红黑树化。
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

JDK1.8在链表长度超过8时会转换为红黑树。
转换方法如下:

final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        //如果节点数变小小于红黑树的节点数阈值时,调整空间
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
            //该方法直接返回一个红黑树结点。
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                //从链表头开始依次插入红黑树
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }
        // For treeifyBin
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
    return new TreeNode<>(p.hash, p.key, p.value, next);
}

扩容

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            //如果原容量大于最大空间,则让阈值为最大值。因为不能再扩容了,最大容量就是整数最大值。
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //两倍扩容,阈值也跟着变为两倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        //当后面没有节点时,直接插入即可 //每个元素重新计算索引位置,此处的hash值并没有变,只是改变索引值
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                    //否则,就从头到尾依次将节点进行索引然后插入新数组,这样插入后的链表顺序会和原来的顺序相反。
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

读取实现:get(key)

        相对于HashMap的存而言,取就显得比较简单了。通过key的hash值找到在table数组中的索引处的Entry,然后返回该key对应的value即可。
public V get(Object key) {
        // 若为null,调用getForNullKey方法返回相对应的value
        if (key == null)
            return getForNullKey();
        // 根据该 key 的 hashCode 值计算它的 hash 码  
        int hash = hash(key.hashCode());
        // 取出 table 数组中指定索引处的值
        for (Entry<K, V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
            Object k;
            //若搜索的key与查找的key相同,则返回相对应的value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                return e.value;
        }
        return null;
    }

在这里能够根据key快速的取到value除了和HashMap的数据结构密不可分外,还和Entry有莫大的关系,在前面就提到过,HashMap在存储过程中并没有将key,value分开来存储,而是当做一个整体key-value来处理的,这个整体就是Entry对象。

同时value也只相当于key的附属而已。在存储的过程中,系统根据key的hashcode来决定Entry在table数组中的存储位置,在取的过程中同样根据key的hashcode取出相对应的Entry对象。

在java中与有两个类都提供了一个多种用途的hashTable机制,他们都可以将可以key和value结合起来构成键值对通过put(key,value)方法保存起来,然后通过get(key)方法获取相对应的value值。

HashTable

一个是前面提到的HashMap,还有一个就是马上要讲解的HashTable。对于HashTable而言,它在很大程度上和HashMap的实现差不多,如果我们对HashMap比较了解的话,对HashTable的认知会提高很大的帮助。他们两者之间只存在几点的不同,这个后面会阐述。

定义

  HashTable在Java中的定义如下:
public class Hashtable<K,V>
    extends Dictionary<K,V>
    implements Map<K,V>, Cloneable, java.io.Serializable
      从中可以看出HashTable继承Dictionary类,实现Map接口。其中Dictionary类是任何可将键映射到相应值的类(如 Hashtable)的抽象父类。每个键和每个值都是一个对象。在任何一个 Dictionary 对象中,每个键至多与一个值相关联。Map是"key-value键值对"接口。
  HashTable采用"拉链法"实现哈希表,它定义了几个重要的参数:table、count、threshold、loadFactor、modCount。
  table:为一个Entry[]数组类型,Entry代表了“拉链”的节点,每一个Entry代表了一个键值对,哈希表的"key-value键值对"都是存储在Entry数组中的。
  count:HashTable的大小,注意这个大小并不是HashTable的容器大小,而是他所包含Entry键值对的数量。
  threshold:Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值="容量*加载因子"。
  loadFactor:加载因子。
  modCount:用来实现“fail-fast”机制的(也就是快速失败)。所谓快速失败就是在并发集合中,其进行迭代操作时,若有其他线程对其进行结构性的修改,这时迭代器会立马感知到,并且立即抛出ConcurrentModificationException异常,而不是等到迭代完成之后才告诉你(你已经出错了)。

构造方法

  在HashTabel中存在5个构造函数。通过这5个构造函数我们构建出一个我想要的HashTable。
public Hashtable() {
        this(11, 0.75f);
    }
      默认构造函数,容量为11,加载因子为0.75。
public Hashtable(int initialCapacity) {
        this(initialCapacity, 0.75f);
    }
      用指定初始容量和默认的加载因子 (0.75) 构造一个新的空哈希表。
public Hashtable(int initialCapacity, float loadFactor) {
        //验证初始容量
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        //验证加载因子
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load: "+loadFactor);
        if (initialCapacity==0)
            initialCapacity = 1;
        this.loadFactor = loadFactor;
        //初始化table,获得大小为initialCapacity的table数组
        table = new Entry[initialCapacity];
        //计算阀值
        threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
        //初始化HashSeed值
        initHashSeedAsNeeded(initialCapacity);
    }

用指定初始容量和指定加载因子构造一个新的空哈希表。其中initHashSeedAsNeeded方法用于初始化hashSeed参数,其中hashSeed用于计算key的hash值,它与key的hashCode进行按位异或运算。这个hashSeed是一个与实例相关的随机值,主要用于解决hash冲突。

private int hash(Object k) {
        return hashSeed ^ k.hashCode();
    }

构造一个与给定的 Map 具有相同映射关系的新哈希表。

public Hashtable(Map<? extends K, ? extends V> t) {
        //设置table容器大小,其值==t.size * 2 + 1
        this(Math.max(2*t.size(), 11), 0.75f);
        putAll(t);
    }

主要方法

HashTable的API对外提供了许多方法,这些方法能够很好帮助我们操作HashTable,但是这里我只介绍两个最根本的方法:put、get。

  首先我们先看put方法:将指定 key 映射到此哈希表中的指定 value。注意这里键key和值value都不可为空。
public synchronized V put(K key, V value) {
        // 确保value不为null
        if (value == null) {
            throw new NullPointerException();
        }
        /*
         * 确保key在table[]是不重复的
         * 处理过程:
         * 1、计算key的hash值,确认在table[]中的索引位置
         * 2、迭代index索引位置,如果该位置处的链表中存在一个一样的key,则替换其value,返回旧值
         */
        Entry tab[] = table;
        int hash = hash(key);    //计算key的hash值
        int index = (hash & 0x7FFFFFFF) % tab.length;     //确认该key的索引位置
        //迭代,寻找该key,替换
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                V old = e.value;
                e.value = value;
                return old;
            }
        }
        modCount++;
        if (count >= threshold) {  //如果容器中的元素数量已经达到阀值,则进行扩容操作
            rehash();
            tab = table;
            hash = hash(key);
            index = (hash & 0x7FFFFFFF) % tab.length;
        }
        // 在索引位置处插入一个新的节点
        Entry<K,V> e = tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        //容器中元素+1
        count++;
        return null;
    }

put方法的整个处理流程是:计算key的hash值,根据hash值获得key在table数组中的索引位置,然后迭代该key处的Entry链表(我们暂且理解为链表),若该链表中存在一个这个的key对象,那么就直接替换其value值即可,否则在将改key-value节点插入该index索引位置处

在HashTabled的put方法中有两个地方需要注意:

1、HashTable的扩容操作,在put方法中,如果需要向table[]中添加Entry元素,会首先进行容量校验,如果容量已经达到了阀值,HashTable就会进行扩容处理rehash(),如下:

protected void rehash() {
        int oldCapacity = table.length;
        //元素
        Entry<K,V>[] oldMap = table;
        //新容量=旧容量 * 2 + 1
        int newCapacity = (oldCapacity << 1) + 1;
        if (newCapacity - MAX_ARRAY_SIZE > 0) {
            if (oldCapacity == MAX_ARRAY_SIZE)
                return;
            newCapacity = MAX_ARRAY_SIZE;
        }
        //新建一个size = newCapacity 的HashTable
        Entry<K,V>[] newMap = new Entry[];
        modCount++;
        //重新计算阀值
        threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
        //重新计算hashSeed
        boolean rehash = initHashSeedAsNeeded(newCapacity);
        table = newMap;
        //将原来的元素拷贝到新的HashTable中
        for (int i = oldCapacity ; i-- > 0 ;) {
            for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
                Entry<K,V> e = old;
                old = old.next;
                if (rehash) {
                    e.hash = hash(e.key);
                }
                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                e.next = newMap[index];
                newMap[index] = e;
            }
        }
    }

在这个rehash()方法中我们可以看到容量扩大两倍+1,同时需要将原来HashTable中的元素一一复制到新的HashTable中,这个过程是比较消耗时间的,同时还需要重新计算hashSeed的,毕竟容量已经变了。

这里对阀值啰嗦一下:比如初始值11、加载因子默认0.75,那么这个时候阀值threshold=8,当容器中的元素达到8时,HashTable进行一次扩容操作,容量 = 8
2 + 1 =17,而阀值threshold=170.75 = 13,当容器元素再一次达到阀值时,HashTable还会进行扩容操作,依次类推。

下面是计算key的hash值,这里hashSeed发挥了作用。

private int hash(Object k) {
        return hashSeed ^ k.hashCode();
    }

相对于put方法,get方法就会比较简单,处理过程就是计算key的hash值,判断在table数组中的索引位置,然后迭代链表,匹配直到找到相对应key的value,若没有找到返回null。

public synchronized V get(Object key) {
        Entry tab[] = table;
        int hash = hash(key);
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return e.value;
            }
        }
        return null;
    }

HashTable与HashMap的异同点

HashTable和HashMap存在很多的相同点,但是他们还是有几个比较重要的不同点。

>

第一:我们从他们的定义就可以看出他们的不同,HashTable基于Dictionary类,而HashMap是基于AbstractMap。Dictionary是什么?它是任何可将键映射到相应值的类的抽象父类,而AbstractMap是基于Map接口的骨干实现,它以最大限度地减少实现此接口所需的工作。

第二:HashMap可以允许存在一个为null的key和任意个为null的value,但是HashTable中的key和value都不允许为null。如下:

当HashMap遇到为null的key时,它会调用putForNullKey方法来进行处理。对于value没有进行任何处理,只要是对象都可以。

if (key == null)
            return putForNullKey(value);
      而当HashTable遇到null时,他会直接抛出NullPointerException异常信息。
if (value == null) {
    throw new NullPointerException();
}

第三:Hashtable的方法是同步的,而HashMap的方法不是。所以有人一般都建议如果是涉及到多线程同步时采用HashTable,没有涉及就采用HashMap,但是在Collections类中存在一个静态方法:synchronizedMap(),该方法创建了一个线程安全的Map对象,并把它作为一个封装的对象来返回,所以通过Collections类的synchronizedMap方法是可以我们你同步访问潜在的HashMap。这样君该如何选择呢???

面试题:HashMap和HashTable的区别

HashMap线程不安全,HashTable是线程安全的。HashMap内部实现没有任何线程同步相关的代码,所以相对而言性能要好一点。如果在多线程中使用HashMap需要自己管理线程同步。HashTable大部分对外接口都使用synchronized包裹,所以是线程安全的,但是性能会相对差一些。

二者的基类不一样。HashMap派生于AbstractMap,HashTable派生于Dictionary。它们都实现Map, Cloneable, Serializable这些接口。AbstractMap中提供的基础方法更多,并且实现了多个通用的方法,而在Dictionary中只有少量的接口,并且都是abstract类型。

key和value的取值范围不同。HashMap的key和value都可以为null,但是HashTablekey和value都不能为null。对于HashMap如果get返回null,并不能表明HashMap不存在这个key,如果需要判断HashMap中是否包含某个key,就需要使用containsKey这个方法来判断。

算法不一样。HashMap的initialCapacity为16,而HashTable的initialCapacity为11。HashMap中初始容量必须是2的幂,如果初始化传入的initialCapacity不是2的幂,将会自动调整为大于出入的initialCapacity最小的2的幂。HashMap使用自己的计算hash的方法(会依赖key的hashCode方法),HashTable则使用key的hashCode方法得到。

上述内容就是HashMap和HashTable的区别以及常见面试题是什么,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注行业资讯频道。

内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/138378.html

(0)

相关推荐

  • Java循环和数组练习题有哪些

    技术Java循环和数组练习题有哪些这篇文章主要介绍“Java循环和数组练习题有哪些”,在日常操作中,相信很多人在Java循环和数组练习题有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”

    攻略 2021年11月21日
  • Bytom侧链Vapor源代码分析节点的解块过程是怎样的?

    技术Bytom侧链Vapor源码分析节点出块过程是怎样的Bytom侧链Vapor源码分析节点出块过程是怎样的,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。小

    攻略 2021年12月18日
  • 抖音刷粉网,免费抖音刷粉工具?

    技术抖音刷粉网,免费抖音刷粉工具?抖音可以花钱购买粉丝,很多营销人员想购买粉丝在抖音上推广,这导致目前刷粉粉普遍是抖音。抖音官方公告正式发布,如果有刷粉,刷点赞,刷评论和其他行为将会被封号的,但事实上,找到一个定期刷粉平

    测评 2021年10月20日
  • fabricca配置文件详细说明(fabric-ca设置账户使用期限)

    技术Fabric CA创建用户机制的示例分析这篇文章给大家分享的是有关Fabric CA创建用户机制的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。在研究Fabric CA 创建用户,

    攻略 2021年12月25日
  • jdbc使用过程中常见的问题(简述6步实现jdbc的操作)

    技术如何进行JDBC的实例分析如何进行JDBC的实例分析,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。JDBC例子1,首先在配置文件(sys

    攻略 2021年12月18日
  • rocketmq 报什么错要重推(rocketmq能存储多少个topic)

    技术RocketMQ架构上主要分为几个部分这篇文章主要介绍RocketMQ架构上主要分为几个部分,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!技术架构RocketMQ架构上主要分为四部分,如上图所

    攻略 2021年12月18日