python画八角形代码步骤(python高级算法绘图实例)

技术python如何绘制超炫酷动态Julia集这期内容当中小编将会给大家带来有关python如何绘制超炫酷动态Julia集,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。前言此Julia

本期,边肖将为您带来关于python如何绘制酷动态Julia集的信息。文章内容丰富,从专业角度进行分析和描述。希望你看完这篇文章能有所收获。

00-1010这个Julia不是Julia,指的是使迭代公式F (z)=Z 2C F (z)=Z 2C F (z)=Z 2C C收敛于某个复数c c c的复数z z的集合例如,当c=0 c=0 c=0时,其收敛区间为z 2 nbsp。

;          <                      1                          z^2<1               z2<1的单位圆,对应的                              c                          c               c的Julia集便是                              cos                      ⁡                      θ                      +                      i                      sin                      ⁡                      θ                          \cos\theta+i\sin\theta               cosθ+isinθ。

Mandelbrot集

特别地,当                              c                      =                      z                          c=z               c=z的初始值时,符合收敛条件的                              z                          z               z的便构成大名鼎鼎的Mandelbrot集

python如何绘制超炫酷动态Julia集

在上图中,颜色表示该点的发散速度,可以理解为开始发散时迭代的次数。其生成代码也非常简单,唯一需要注意的是,由于使用了大量的矩阵运算,故使用了cupy,如果电脑没装cuda,只需将所有的cp改为np即可。

# 这些代码会在后面的程序中反复调用,不再说明
import numpy as np
import time
import matplotlib.pyplot as plt
import cupy as cp

#生成z坐标 x0,y0 为起始点, nx,ny为点数, delta为点距
def genZ(x0, y0, nx, ny, delta):
    real, img = cp.indices([nx,ny])*delta
    real += x0
    img += y0
    return real.T+img.T*1j

#获取Julia集,n为迭代次数,m为判定发散点,大于1即可
def getJulia(z,c,n,m=2):
    t = time.time()
    z,out = z*1, cp.abs(z)
    c = cp.zeros_like(z)+c
    for i in range(n):
        absz = cp.abs(z)
        z[absz>m]=0		#对开始发散的点置零
        c[absz>m]=0		
        out[absz>m]=i	#记录发散点的发散速度
        z = z*z + c
    print("time:",time.time()-t)
    return out

z1 = genZ(-2,-1.5,1000,1000,0.003)
mBrot = getJulia(z1,z1,50)
plt.imshow(mBrot.get(), cmap=plt.cm.jet)
plt.show()

如果对其生成过程感兴趣,那么可以观察一下随着迭代次数的增加,图像的变化情况

python如何绘制超炫酷动态Julia集

代码如下。

from matplotlib import animation

fig = plt.figure()
fig.subplots_adjust(top=1, bottom=0, left=0, right=1)
ax = plt.subplot()

def getJulias(z,c,n,m=2):
    z,out = z*1, cp.abs(z)
    c = cp.zeros_like(z)+c
    J = []
    for i in range(n):
        z = z*z + c
        absz = cp.abs(z)
        z[absz>m]=0		#对开始发散的点置零
        c[absz>m]=0		
        out[absz>m]=i	#记录发散点的发散速度
        im = ax.imshow(out.get(),cmap=plt.cm.jet, animated=True)
        ax.set_axis_off()
        J.append([im])
    return J

N = 75     #迭代次数
z1 = genZ(-2,-1.5,1000,1000,0.003)
J = getJulias(z1,z1,N)

ani = animation.ArtistAnimation(fig, J, interval=50, blit=True,repeat_delay=1000)
plt.show()
ani.save('julias.gif',writer='imagemagick')

无限缩放

Mandelbrot集的分形特征意味着我们所生成的图片可以无限放大,但是受到栅格化尺寸的影响,手动的放大并不会更改其真实尺寸,

为了照顾观感,将缩放中心作为图像的中心,所以对genZ函数进行修改。如果选取(-0.75,-0.2)作为缩放中心,则其变化如下

python如何绘制超炫酷动态Julia集

代码为

from matplotlib import animation

# 生成z坐标 xy=np.array([xc,yc]) 为起始点,
# nxy=np.array([nx,ny])为点数, delta为点距
def genZbyCenter(xy,nxy,delta):
    x0, y0 = xy-np.array(nxy)*delta/2
    return genZ(x0,y0,*nxy,delta)

mBrots = []
xy = [-0.75,-0.2]
nxy = [1000,1000]
delta0 = 0.003  #初始宽度

fig = plt.figure()
fig.subplots_adjust(top=1, bottom=0, left=0, right=1)
ax = plt.subplot()

for n in range(50):
    z1 = genZbyCenter(xy,nxy,1.1**(-n)*delta0)
    out = getJulia(z1,z1,40)
    im = ax.imshow(out.get(),cmap=plt.cm.jet, animated=True)
    ax.set_axis_off()
    mBrots.append([im])

ani = animation.ArtistAnimation(fig, mBrots, interval=50, blit=True)
plt.show()
ani.save('zoom.gif',writer='imagemagick')

Julia集

如果更改c的值,那么就能得到一个变化着的Julia集,例如,下面选取一条直线

y                         =                         x                              y=x                  y=x

上面的Julia集,效果如图所示

python如何绘制超炫酷动态Julia集

代码为

z1 = genZ(-2,-1.5,1000,1000,0.003)

fig = plt.figure()
fig.subplots_adjust(top=1, bottom=0, left=0, right=1)
ax = plt.subplot()

mBrots = []
for x in np.arange(0.5,1,0.01):
    c = x + x*1j
    out = getJulia(z1,c,40)
    im = ax.imshow(out.get(),cmap=plt.cm.jet, animated=True)
    ax.set_axis_off()
    mBrots.append([im])

ani = animation.ArtistAnimation(fig, mBrots, interval=50)
plt.show()
ani.save('julia.gif',writer='imagemagick')

上述就是小编为大家分享的python如何绘制超炫酷动态Julia集了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注行业资讯频道。

内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/144748.html

(0)

相关推荐

  • 如何构建一个自己的Base Image 镜像

    技术如何构建一个自己的Base Image 镜像如何构建一个自己的Base Image 镜像,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。m

    攻略 2021年10月19日
  • window10上登录Oracle时提示ORA-12546错误怎么办

    技术window10上登录Oracle时提示ORA-12546错误怎么办这篇文章主要介绍window10上登录Oracle时提示ORA-12546错误怎么办,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要

    2021年11月20日
  • 第 5 篇 Scrum 冲刺博客

    技术第 5 篇 Scrum 冲刺博客 第 5 篇 Scrum 冲刺博客一:会议
    工作姓名
    昨日任务
    进度
    今日任务姜珺杨
    小程序界面优化
    ?
    完善图片上传和加载界面刘梓祥
    继续后台的编写和接口的编写
    ?

    礼包 2021年11月23日
  • oracle中出现ORA-01102错误怎么办

    技术oracle中出现ORA-01102错误怎么办这篇文章主要介绍了oracle中出现ORA-01102错误怎么办,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解

    攻略 2021年11月24日
  • Cenos7 yum如何安装mongodb以及启动错误的解决办法是什么

    技术Cenos7 yum如何安装mongodb以及启动错误的解决办法是什么Cenos7 yum如何安装mongodb以及启动错误的解决办法是什么,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,

    攻略 2021年11月3日
  • 朴素贝叶斯算法例题讲解(大数据算法朴素贝叶斯分类器)

    技术大数据中朴素贝叶斯法的示例分析这篇文章给大家分享的是有关大数据中朴素贝叶斯法的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。 最为广泛的两种分类模型是决策树模型(Decision

    攻略 2021年12月14日