最大公约数之和

技术最大公约数之和 最大公约数之和本文主要讲一下最大公约数的和的推导过程(因为其太过经典,其实是博主老忘)。
原式:
\[\sum_{i = 1}^n\sum_{j = 1}^n\gcd(i, j)
\

最大公约数之和

本文主要讲一下最大公约数的和的推导过程(因为其太过经典,其实是博主老忘)。

原式:

\[\ sum _ { I=1}^n\sum_{j=1}^n\gcd(i,j)

\]莫比乌斯反演经典入门题。

话不多说,进入正文。

\[\begin{aligned}

\ sum \ limits _ { I=1}^n\sum\limits_{j=1}^ngcd(i,j)\ \

=\ sum \ limits _ { k=1}^nk\sum\limits_{i=1}^n\sum\limits_{j=1}^n[gcd(i,j)=k]\ \

=\ sum \ limits _ { k=1}^nk\sum\limits_{i=1}^{ \左侧\左侧\地板\地板{ n } { k }右侧\地板} \ sum \ limits _ { j=1}^{ \左侧\地板\地板{ n } { k }右侧\地板}[gcd(i,j)=1] \\

=\ sum \ limits _ { k=1}^nk\sum\limits_{i=1}^{ \左侧\左侧\右侧\右侧{ k } \ sum \ limits _ { j=1}^{ \左侧\左侧\左侧\右侧{ k } \右侧\左侧} \(gcd(I,j))

\ end {对齐}

\]根据\(\=\* I \),即\(\(n)=\ sum \ limits _ { d | n } \ mu(d)\),得:

\[\ sum \ limits _ { k=1}^nk\sum\limits_{i=1}^{ \左侧\右侧\地板\地板{ n } { k }右侧\地板} \ sum \ limits _ { j=1}^{ \左侧\地板\地板{ n } { k }右侧\地板}\sum\limits_{d | (i,j)}\mu(d)

\]我们先考虑这样一个式子如何化简:

\[\ sum \ limites _ { I=1}^{ \左侧\左侧\右侧\右侧{ k } \ sum \ limites _ { d | I } \ mu(d)

\]把枚举\(i\)改成枚举\(d\),\(\左侧\地板\地板{ n } { k }右侧\地板\)以内是\(d\)的倍数的数有\(\左侧\地板\ dfrac { n } { dk } \右侧\地板\)个,得:

\[\ sum \ limits _ { d=1}^{ \左侧\左侧\地板\地板{ n } { k }右侧\地板} \左侧\地板\地板{ n } { dk }右侧\地板\亩(d)

\]我们先枚举\(d\),并把这个式子代入到刚才我们化简得那个式子中去:

\[\begin{aligned}

\ sum \ limits _ { k=1}^nk\sum\limits_{i=1}^{ \左侧\右侧\地板\地板{ n } { k }右侧\地板} \ sum \ limits _ { j=1}^{ \左侧\地板\地板\地板{ n } { k }右侧\地板}\sum\limits_{d | (i,j)}\mu(d) \

=\ sum \ limits _ { k=1}^nk\sum\limits_{d=1}^{ \left\lfloor\frac{n}{k}\right\rfloor}\left\lfloor\dfrac{n}{dk}\right\rfloor^2\mu(d)

\ end {对齐}

\]再令\(T=dk\),并枚举\(T\)(其实下面的式子和上面的式子里\(d\)和\(k\)反过来了,不过我懒得改了QwQ):

\[\ sum _ { t=1}^n\sum_{d \ mid t } d \ mu(\ frac TD)\ f floor \ frac nt\rfloor^2

\]至此,就已经是一般形式了,这个可以用整除分块快速求解。

但是,这道题还没有完,还可以进一步转化。

我们知道\(\varphi=\mu * id\),正好式子里存在!所以:

\[\ sum _ { t=1}^n\varphi(t)\lfloor\frac nt\rfloor^2

\]现在,这道题才算是真正结束了(感觉一下子式子里啥都没了QwQ)

\[\_EOF\_

\]

本文来自博客园,作者:xixike,转载请注明原文链接:https://www .cn博客。com/xixixike/p/15713088。超文本标记语言

内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/154011.html

(0)

相关推荐

  • 如何使用Mybatis注解方式完成输入参数为list的SQL语句拼接方式

    技术如何使用Mybatis注解方式完成输入参数为list的SQL语句拼接方式这篇文章给大家分享的是有关如何使用Mybatis注解方式完成输入参数为list的SQL语句拼接方式的内容。小编觉得挺实用的,因此分享给大家做个参

    攻略 2021年11月30日
  • 如何搭建RISC-V编译环境与运行环境

    技术如何搭建RISC-V编译环境与运行环境如何搭建RISC-V编译环境与运行环境,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。我们现在芯片被

    攻略 2021年12月10日
  • Vue中怎么使用计算属性

    技术Vue中怎么使用计算属性这期内容当中小编将会给大家带来有关Vue中怎么使用计算属性,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。下面带大家了解一下Vue计算属性,介绍一下Vue计算

    攻略 2021年12月3日
  • 基本RNN的Tensorflow实现是怎样的

    技术基本RNN的Tensorflow实现是怎样的这篇文章给大家介绍基本RNN的Tensorflow实现是怎样的,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。今天我们一起看下在tensorflow中基

    攻略 2021年11月24日
  • 网络编程--简单的客户端与服务端连接

    技术网络编程--简单的客户端与服务端连接 网络编程--简单的客户端与服务端连接package socket;import java.io.IOException;
    import java.io.Outp

    礼包 2021年12月2日
  • C#无词尾符号的示例分析

    技术C#无词尾符号的示例分析这篇文章将为大家详细讲解有关C#无词尾符号的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。C#的文法符号一个C#程序由一个或多个源文件组成。一个源文

    攻略 2021年12月1日