本文与您分享K-means算法如何自动对数据进行分组。边肖觉得很实用,分享给大家学习。希望你看完这篇文章能有所收获。我们就不多说了。让我们和边肖一起看看。
下面要介绍的K 均值算法是一种无监督学习.算法
与分类算法相比,无监督学习算法又称为聚类算法,即只有特征数据而没有目标数据,这样算法就可以自动从数据中“学习知识”,并将聚集不同种类的数据归入相应的类别。
K 均值的英语是K-Means,意思是:
K:这意味着该算法可以在K.将数据分成不同的组
均值:它意味着每个群体的中心点是群体中所有价值观的平均值。
K 均值算法可以将一个未分类的数据集分成k类。某个数据应该划分为哪一类是由数据决定的,群组中心点,的相似度也就是说,如果数据与哪一类的中心点最相似,就应该划分为哪一类。
关于如何计算事物之间的相似度,请参阅第《计算机如何理解事物的相关性》条。
使用K 均值算法的一般步骤是:
确定K值是多少:
对于k值的选择,我们可以对数据进行分析,估计的数据要分几类。
如果无法估计出确切的数值,可以多尝试几个K值,最后以除法效果最好的K值作为最终选择。
选择:K 个中心点:一般来说,第一个K 个中心点来自随机选择.
中心点的相似度.将数据集中的所有数据分为不同的类别
根据类别中的平均数据重新计算每个类别中心点的位置。
迭代第3,4步,直到中心点的位置几乎不变,分类过程结束。
00-1010下面是二维数据点的聚类过程,看看K 均值算法是如何聚类的。
首先,有一些离散的数据点,如下图所示:
我们使用K 均值算法对这些数据点进行聚类。随机选取两个点作为两个类的中心点,即红x和蓝x:
计算所有数据点与这两个中心点之间的距离,红色x附近的点标记为红色,蓝色x附近的点标记为蓝色:
重新计算两个中心点的位置,并将它们分别移动到新位置:
重新计算从所有数据点到红色x和蓝色x的距离,红色x附近的点标记为红色,蓝色x附近的点标记为蓝色:
c="https://cache.yisu.com/upload/information/20210520/347/162930.png" alt="K 均值算法是如何让数据自动分组">
再次计算两个中心点的位置,两个中心点分别移动到新的位置:
直到中心点的位置几乎不再变化,聚类结束。
以上过程就是K 均值算法的聚类过程。
3,K 均值算法的实现
K 均值算法是一个聚类算法,sklearn 库中的 cluster 模块实现了一系列的聚类算法,其中就包括K 均值算法。
来看下KMeans 类的原型:
KMeans( n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='deprecated', verbose=0, random_state=None, copy_x=True, n_jobs='deprecated', algorithm='auto')
可以看KMeans 类有很多参数,这里介绍几个比较重要的参数:
-
n_clusters: 即 K 值,可以随机设置一些 K 值,选择聚类效果最好的作为最终的 K 值。
-
init:选择初始中心点的方式:
-
init='k-means++':可加快收敛速度,是默认方式,也是比较好的方式。
-
init='random ':随机选择中心点。
-
也可以自定义方式,这里不多介绍。
-
n_init:初始化中心点的运算次数,默认是 10。如果 K 值比较大,可以适当增大 n_init 的值。
-
algorithm:k-means 的实现算法,有auto,full,elkan三种。
-
默认是auto,根据数据的特点自动选择用full或者elkan。
-
max_iter:算法的最大迭代次数,默认是300。
-
如果聚类很难收敛,设置最大迭代次数可以让算法尽快结束。
下面对一些二维坐标中的点进行聚类,看下如何使用K 均值算法。
4,准备数据点
下面是随机生成的三类坐标点,每类有20 个点,不同类的点的坐标在不同的范围内:
-
A 类点:Ax 表示A 类点的横坐标,Ay 表示A 类点的纵坐标。横纵坐标范围都是 (0, 20]。
-
B 类点:Bx 表示B 类点的横坐标,By 表示B 类点的纵坐标。横纵坐标范围都是 (40, 60]。
-
C 类点:Cx 表示C 类点的横坐标,Cy 表示C 类点的纵坐标。横纵坐标范围都是 (70, 90]。
Ax = [20, 6, 14, 13, 8, 19, 20, 14, 2, 11, 2, 15, 19, 4, 4, 11, 13, 4, 15, 11] Ay = [14, 19, 17, 16, 3, 7, 9, 18, 20, 3, 4, 12, 9, 17, 14, 1, 18, 17, 3, 5] Bx = [53, 50, 46, 52, 57, 42, 47, 55, 56, 57, 56, 50, 46, 46, 44, 44, 58, 54, 47, 57] By = [60, 57, 57, 53, 54, 45, 54, 57, 49, 53, 42, 59, 54, 53, 50, 50, 58, 58, 58, 51] Cx = [77, 75, 71, 87, 74, 70, 74, 85, 71, 75, 72, 82, 81, 70, 72, 71, 88, 71, 72, 80] Cy = [85, 77, 82, 87, 71, 71, 77, 88, 81, 73, 80, 72, 90, 77, 89, 88, 83, 77, 90, 72]
我们可以用 Matplotlib 将这些点画在二维坐标中,代码如下:
import matplotlib.pyplot as plt plt.scatter(Ax + Bx + Cx, Ay + By + Cy, marker='o') plt.show()
画出来的图如下,可看到这三类点的分布范围还是一目了然的。
关于如何使用 Matplotlib 绘图,可以参考文章《如何使用Python 进行数据可视化》。
5,对数据聚类
下面使用K 均值算法对数据点进行聚类。
创建K 均值模型对象:
from sklearn.cluster import KMeans # 设置 K 值为 3,其它参数使用默认值 kmeans = KMeans(n_clusters=3)
准备数据,共三大类,60 个坐标点:
train_data = [ # 前20 个为 A 类点 [20, 14], [6, 19], [14, 17], [13, 16], [8, 3], [19, 7], [20, 9], [14, 18], [2, 20], [11, 3], [2, 4], [15, 12], [19, 9], [4, 17], [4, 14], [11, 1], [13, 18], [4, 17], [15, 3], [11, 5], # 中间20 个为B 类点 [53, 60], [50, 57], [46, 57], [52, 53], [57, 54], [42, 45], [47, 54], [55, 57], [56, 49], [57, 53], [56, 42], [50, 59], [46, 54], [46, 53], [44, 50], [44, 50], [58, 58], [54, 58], [47, 58], [57, 51], # 最后20 个为C 类点 [77, 85], [75, 77], [71, 82], [87, 87], [74, 71], [70, 71], [74, 77], [85, 88], [71, 81], [75, 73], [72, 80], [82, 72], [81, 90], [70, 77], [72, 89], [71, 88], [88, 83], [71, 77], [72, 90], [80, 72], ]
拟合模型:
kmeans.fit(train_data)
对数据进行聚类:
predict_data = kmeans.predict(train_data)
查看聚类结果,其中的0,1,2 分别代表不同的类别:
>>> print(predict_data) [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
通过观察最终的聚类结果predict_data,可以看到,前,中,后20 个数据分别被分到了不同的类中,也非常符合我们的预期,说明K 均值算法的聚类结果还是很不错的 。
因为本例中的二维坐标点的分布界限非常明显,所以最终的聚类结果非常不错。
我们可以通过 n_iter_
属性来查看迭代的次数:
>>> kmeans.n_iter_ 2
通过 cluster_centers_
属性查看每个类的中心点坐标:
>>> kmeans.cluster_centers_ array([[11.25, 11.3 ], [75.9 , 80.5 ], [50.85, 53.6 ]])
将这三个中心点画在坐标轴中,如下:
以上就是K 均值算法是如何让数据自动分组,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注行业资讯频道。
内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/155998.html