机器学习knn 算法之手写数字识别(knn算法之手写数字识别)

技术KNN算法中如何识别手写数字今天就跟大家聊聊有关KNN算法中如何识别手写数字,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。今天来介绍如何使用KNN 算法识别手

今天跟大家聊聊KNN算法如何识别手写数字,可能很多人都不太懂。为了让大家更好的了解,边肖为大家总结了以下内容,希望大家能从这篇文章中有所收获。

今天,使用KNN 算法识别手写数字?怎么样

00-1010手写数字数据集是用于图像处理的数据集。这些数据描述了[0, 9],的数字,我们可以用KNN 算法来识别这些数字。

MNIST是一个完整的手写数字数据集,包含60000个训练样本和10000个测试样本。

sklearn也有自己的手写数字数据集:

它包含1797个数据样本,每个样本描述一个8*8像素的[0, 9]数。

每个样本由65个数字组成:

前64位是特征数据,特征数据的范围是[0, 16].

最后一个数字是目标数据,目标数据的范围是[0, 9].

让我们取五个样本来看看:

0,0,5,13,9,1,0,0,0,0,13,15,10,15,5,0,0,3,15,2,0,11,8,0,0,4,12,0,0,8,8,0,0,5,8,0,0,9,8,0,0,4,11,0,1,12,7,0,0,2,14,5,10,12,0,0,0,0,6,13,10,0,0,0,0

0,0,0,12,13,5,0,0,0,0,0,11,16,9,0,0,0,0,3,15,16,6,0,0,0,7,15,16,16,2,0,0,0,0,1,16,16,3,0,0,0,0,1,16,16,6,0,0,0,0,1,16,16,6,0,0,0,0,0,11,16,10,0,0,1

0,0,0,4,15,12,0,0,0,0,3,16,15,14,0,0,0,0,8,13,8,16,0,0,0,0,1,6,15,11,0,0,0,1,8,13,15,1,0,0,0,9,16,16,5,0,0,0,0,3,13,16,16,11,5,0,0,0,0,3,11,16,9,0,2

0,0,7,15,13,1,0,0,0,8,13,6,15,4,0,0,0,2,1,13,13,0,0,0,0,0,2,15,11,1,0,0,0,0,0,1,12,12,1,0,0,0,0,0,1,10,8,0,0,0,8,4,5,14,9,0,0,0,7,13,13,9,0,0,3

0,0,0,1,11,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,1,13,6,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,15,0,9,8.

from sklearn . dataset simportload _ digits

数字=加载数字()查看第一个图像数据:

digits.images[0]

数组([[0。0.5.13.9.1.0.0.],

[0.0.13.15.10.15.5.0.],

[0.3.15.2.0.11.8.0.],

[0.4.12.0.0.8.8.0.],

[0.5.8.0.n

bsp; 0.,  9.,  8.,  0.],
       [ 0.,  4., 11.,  0.,  1., 12.,  7.,  0.],
       [ 0.,  2., 14.,  5., 10., 12.,  0.,  0.],
       [ 0.,  0.,  6., 13., 10.,  0.,  0.,  0.]])

我们可以用 matplotlib 将该图像画出来:

>>> import matplotlib.pyplot as plt
>>> plt.imshow(digits.images[0])
>>> plt.show()

画出来的图像如下,代表 0

KNN算法中如何识别手写数字

2,sklearn 对 KNN 算法的实现

sklearn 库的 neighbors 模块实现了KNN 相关算法,其中:

  • KNeighborsClassifier 类用于分类问题

  • KNeighborsRegressor 类用于回归问题

这两个类的构造方法基本一致,这里我们主要介绍 KNeighborsClassifier 类,原型如下:

KNeighborsClassifier(
	n_neighbors=5, 
	weights='uniform', 
	algorithm='auto', 
	leaf_size=30, 
	p=2, 
	metric='minkowski', 
	metric_params=None, 
	n_jobs=None, 
	**kwargs)

来看下几个重要参数的含义:

  • n_neighbors:即 KNN 中的 K 值,一般使用默认值 5。

  • weights:用于确定邻居的权重,有三种方式:

    • weights=uniform,表示所有邻居的权重相同。

    • weights=distance,表示权重是距离的倒数,即与距离成反比。

    • 自定义函数,可以自定义不同距离所对应的权重,一般不需要自己定义函数。

  • algorithm:用于设置计算邻居的算法,它有四种方式:

    • 调整 leaf_size 会影响树的构造和搜索速度。

    • 它和 KD 树相比,采用的是线性扫描,而不是通过构造树结构进行快速检索。

    • 缺点是,当训练集较大的时候,效率很低。

    • KD 树一样都是多维空间的数据结构。

    • 球树更适用于维度较大的情况。

    • KD 树是一种多维空间的数据结构,方便对数据进行检索。

    • KD 树适用于维度较少的情况,一般维数不超过 20,如果维数大于 20 之后,效率会下降。

    • algorithm=auto,根据数据的情况自动选择适合的算法。

    • algorithm=kd_tree,使用 KD 树 算法。

    • algorithm=ball_tree,使用球树算法。

    • algorithm=brute,称为暴力搜索

    • leaf_size:表示构造 KD 树球树时的叶子节点数,默认是 30。

3,构造 KNN 分类器

首先加载数据集:

from sklearn.datasets import load_digits

digits = load_digits()
data = digits.data     # 特征集
target = digits.target # 目标集

将数据集拆分为训练集(75%)和测试集(25%):

from sklearn.model_selection import train_test_split

train_x, test_x, train_y, test_y = train_test_split(
    data, target, test_size=0.25, random_state=33)

构造KNN 分类器:

from sklearn.neighbors import KNeighborsClassifier

# 采用默认参数
knn = KNeighborsClassifier()

拟合模型:

knn.fit(train_x, train_y)

预测数据:

predict_y = knn.predict(test_x)

计算模型准确度:

from sklearn.metrics import accuracy_score

score = accuracy_score(test_y, predict_y)
print score # 0.98

最终计算出来模型的准确度是 98%,准确度还是不错的。

看完上述内容,你们对KNN算法中如何识别手写数字有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注行业资讯频道,感谢大家的支持。

内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/156000.html

(0)

相关推荐

  • 贬义词四字词语,形容人的品质的贬义词成语

    技术贬义词四字词语,形容人的品质的贬义词成语背信弃义,形容人违背诺言,不讲道义的小人的贬义词 泯灭人性,一点人性都没有了,形容这种人坏到极点 自私自利,贬斥小人自私的四字词语 阳奉阴违,明里听你的,暗地里使坏,实打实的小

    生活 2021年10月30日
  • JavaScript编程语言概述

    技术JavaScript编程语言概述 JavaScript编程语言概述产生背景JavaScript最初由Netscape的Brendan Eich设计,最初将其脚本语言命名为LiveScript,后来N

    礼包 2021年11月22日
  • PostgreSQL中Tuple可见性判断分析

    技术PostgreSQL中Tuple可见性判断分析本篇内容主要讲解“PostgreSQL中Tuple可见性判断分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Postgre

    攻略 2021年11月9日
  • 怎么解决RAC数据库环境修改scanip后客户端连接异常

    技术怎么解决RAC数据库环境修改scanip后客户端连接异常这篇文章主要讲解了“怎么解决RAC数据库环境修改scanip后客户端连接异常”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来

    攻略 2021年11月5日
  • ngk的发展(ngk高级和低级怎么区别)

    技术怎么浅析NGK的发展蓝图怎么浅析NGK的发展蓝图,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。NGK作为分布式商业公链项目,致力于打造可服务于各类型商业

    攻略 2021年12月18日
  • 怎么理解MYSQL的auto_increment_offset和auto_increment_increment值

    技术怎么理解MYSQL的auto_increment_offset和auto_increment_increment值本篇内容主要讲解“怎么理解MYSQL的auto_increment_offset和auto_incre

    攻略 2021年11月18日