特征提取orb算法(orb特征匹配算法)

技术如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法本篇文章给大家分享的是有关如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇

本篇文章给大家分享的是有关如何分析ORB、SURF、SIFT特征点提取方法以及电感耦合等离子体(电感耦合等离子体)匹配方法,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

在进行编译视觉SLAM时,书中提到了ORB、SURF、SIFT提取方法,以及特征提取方法暴力匹配(蛮力匹配器)和快速近邻匹配(FLANN)。以及7.9讲述的3D-3D:迭代最近点(迭代最近点)方法,国际比较方案的求解方式有两种:利用线性代数求解(主要是SVD),以及利用非线性优化方式求解。

main.cpp

#包括牡蛎

#包括" opencv2/opencv.hpp "

#包括" opencv2/core/core.hpp "

#包括"打开cv2/功能2d/功能2d。HPP "

#包括" opencv2/highgui/highgui.hpp "

# includeo penc v2/xfeatures 2d。HPP

#包括牡蛎

#包含因子

#includetime.h

#includechrono

#includemath.h

#包括ebit/stdc .h

使用命名空间TD;

使用使用namespacecv

使用命名空间cv :3360 xfeatures 2d

doublepicture1 _ size _ change=1

双图片2 _ size _ change=1;

boolshow _ picture=true

void extract _ ORB 2(字符串图片1,字符串图片2)

{

//- 读取图像

Matimg_1=imread(picture1,CV _ LOAD _ IMAGE _ COLOR);

Matimg_2=imread(picture2,CV _ LOAD _ IMAGE _ COLOR);

assert(img_1.data!=nullptrimg_2.data!=nullptr);

调整大小(img_1,img_1,size(),picture1_size_change,picture 1 _ Size _ change);

调整大小(img_2,img_2,size(),picture2_size_change,picture 2 _ Size _ change);

//- 初始化

STD :矢量关键点关键点_ 1、关键点_ 2;

Matdescriptors _ 1,descriptor _ 2;

ptrffeaturedetector=orb :3360 create(2000,(1.200000048F),8,100);

PtrDescriptorExtractordescriptor=orb : create(5000);

ptrdescriptformatchermatcher=descriptrmatcher : create(' BruteForce-Hamming ');

sp;  //-- 第一步:检测 Oriented FAST 角点位置
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    detector->detect(img_1, keypoints_1);
    detector->detect(img_2, keypoints_2);
 
    //-- 第二步:根据角点位置计算 BRIEF 描述子
    descriptor->compute(img_1, keypoints_1, descriptors_1);
    descriptor->compute(img_2, keypoints_2, descriptors_2);
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    // cout << "extract ORB cost = " << time_used.count() * 1000 << " ms " << endl;
    cout << "detect " << keypoints_1.size() << " and " << keypoints_2.size() << " keypoints " << endl;
 
    if (show_picture)
    {
        Mat outimg1;
        drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
        imshow("ORB features", outimg1);
    }
 
    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
    vector<DMatch> matches;
    // t1 = chrono::steady_clock::now();
    matcher->match(descriptors_1, descriptors_2, matches);
    t2 = chrono::steady_clock::now();
    time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "extract and match ORB cost = " << time_used.count() * 1000 << " ms " << endl;
 
 
    //-- 第四步:匹配点对筛选
    // 计算最小距离和最大距离
    auto min_max = minmax_element(matches.begin(), matches.end(),
                                  [](const DMatch &m1, const DMatch &m2)
                                  { return m1.distance < m2.distance; });
    double min_dist = min_max.first->distance;
    double max_dist = min_max.second->distance;
 
    //   printf("-- Max dist : %f \n", max_dist);
    //   printf("-- Min dist : %f \n", min_dist);
 
    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
    std::vector<DMatch> good_matches;
    for (int i = 0; i < descriptors_1.rows; i++)
    {
        if (matches[i].distance <= max(2 * min_dist, 30.0))
        {
            good_matches.push_back(matches[i]);
        }
    }
        cout << "match " << good_matches.size() << " keypoints " << endl;
 
 
    //-- 第五步:绘制匹配结果
    Mat img_match;
    Mat img_goodmatch;
    drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match);
    drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch);
 
    if (show_picture)
        imshow("good matches", img_goodmatch);
    if (show_picture)
        waitKey(0);
}
 
void extract_SIFT(string picture1, string picture2)
{
    // double t = (double)getTickCount();
    Mat temp = imread(picture1, IMREAD_GRAYSCALE);
    Mat image_check_changed = imread(picture2, IMREAD_GRAYSCALE);
    if (!temp.data || !image_check_changed.data)
    {
        printf("could not load images...\n");
        return;
    }
 
    resize(temp, temp, Size(),  picture1_size_change, picture1_size_change);
    resize(image_check_changed, image_check_changed, Size(), picture2_size_change, picture2_size_change);
 
    //Mat image_check_changed = Change_image(image_check);
    //("temp", temp);
    if (show_picture) 
        imshow("image_check_changed", image_check_changed);
 
    int minHessian = 500;
    // Ptr<SURF> detector = SURF::create(minHessian);    // surf
    Ptr<SIFT> detector = SIFT::create(); // sift
 
    vector<KeyPoint> keypoints_obj;
    vector<KeyPoint> keypoints_scene;
    Mat descriptor_obj, descriptor_scene;
 
 
    clock_t startTime, endTime;
    startTime = clock();
 
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    // cout << "extract ORB cost = " << time_used.count() * 1000 << " ms " << endl;
    detector->detectAndCompute(temp, Mat(), keypoints_obj, descriptor_obj);
    detector->detectAndCompute(image_check_changed, Mat(), keypoints_scene, descriptor_scene);
    cout << "detect " << keypoints_obj.size() << " and " << keypoints_scene.size() << " keypoints " << endl;
 
    // matching
    FlannBasedMatcher matcher;
    vector<DMatch> matches;
    matcher.match(descriptor_obj, descriptor_scene, matches);
 
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "extract and match cost = " << time_used.count() * 1000 << " ms " << endl;
 
    //求最小最大距离
    double minDist = 1000;
    double maxDist = 0;
    //row--行 col--列
    for (int i = 0; i < descriptor_obj.rows; i++)
    {
        double dist = matches[i].distance;
        if (dist > maxDist)
        {
            maxDist = dist;
        }
        if (dist < minDist)
        {
            minDist = dist;
        }
    }
    // printf("max distance : %f\n", maxDist);
    // printf("min distance : %f\n", minDist);
 
    // find good matched points
    vector<DMatch> goodMatches;
    for (int i = 0; i < descriptor_obj.rows; i++)
    {
        double dist = matches[i].distance;
        if (dist < max(5 * minDist, 1.0))
        {
            goodMatches.push_back(matches[i]);
        }
    }
    //rectangle(temp, Point(1, 1), Point(177, 157), Scalar(0, 0, 255), 8, 0);
 
    cout << "match " << goodMatches.size() << " keypoints " << endl;
 
    endTime = clock();
    // cout << "took time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC * 1000 << " ms" << endl;
 
    Mat matchesImg;
    drawMatches(temp, keypoints_obj, image_check_changed, keypoints_scene, goodMatches, matchesImg, Scalar::all(-1),
                Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
    if (show_picture) 
        imshow("Flann Matching Result01", matchesImg);
    // imwrite("C:/Users/Administrator/Desktop/matchesImg04.jpg", matchesImg);
 
    //求h
    std::vector<Point2f> points1, points2;
 
    //保存对应点
    for (size_t i = 0; i < goodMatches.size(); i++)
    {
        //queryIdx是对齐图像的描述子和特征点的下标。
        points1.push_back(keypoints_obj[goodMatches[i].queryIdx].pt);
        //queryIdx是是样本图像的描述子和特征点的下标。
        points2.push_back(keypoints_scene[goodMatches[i].trainIdx].pt);
    }
 
    // Find homography 计算Homography,RANSAC随机抽样一致性算法
    Mat H = findHomography(points1, points2, RANSAC);
    //imwrite("C:/Users/Administrator/Desktop/C-train/C-train/result/sift/Image4_SURF_MinHessian1000_ minDist1000_a0.9b70.jpg", matchesImg);
 
    vector<Point2f> obj_corners(4);
    vector<Point2f> scene_corners(4);
    obj_corners[0] = Point(0, 0);
    obj_corners[1] = Point(temp.cols, 0);
    obj_corners[2] = Point(temp.cols, temp.rows);
    obj_corners[3] = Point(0, temp.rows);
 
    //透视变换(把斜的图片扶正)
    perspectiveTransform(obj_corners, scene_corners, H);
    //Mat dst;
    cvtColor(image_check_changed, image_check_changed, COLOR_GRAY2BGR);
    line(image_check_changed, scene_corners[0], scene_corners[1], Scalar(0, 0, 255), 2, 8, 0);
    line(image_check_changed, scene_corners[1], scene_corners[2], Scalar(0, 0, 255), 2, 8, 0);
    line(image_check_changed, scene_corners[2], scene_corners[3], Scalar(0, 0, 255), 2, 8, 0);
    line(image_check_changed, scene_corners[3], scene_corners[0], Scalar(0, 0, 255), 2, 8, 0);
 
 
    if (show_picture)
    {
        Mat outimg1;
        Mat temp_color = imread(picture1, CV_LOAD_IMAGE_COLOR);
        drawKeypoints(temp_color, keypoints_obj, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
        imshow("SIFT features", outimg1);
    }
 
    if (show_picture) 
        imshow("Draw object", image_check_changed);
    // imwrite("C:/Users/Administrator/Desktop/image04.jpg", image_check_changed);
 
    // t = ((double)getTickCount() - t) / getTickFrequency();
    // printf("averagetime:%f\n", t);
    if (show_picture) 
        waitKey(0);
}
 
void extract_SURF(string picture1, string picture2)
{
     // double t = (double)getTickCount();
    Mat temp = imread(picture1, IMREAD_GRAYSCALE);
    Mat image_check_changed = imread(picture2, IMREAD_GRAYSCALE);
    if (!temp.data || !image_check_changed.data)
    {
        printf("could not load images...\n");
        return;
    }
 
    resize(temp, temp, Size(),  picture1_size_change, picture1_size_change);
    resize(image_check_changed, image_check_changed, Size(), picture2_size_change, picture2_size_change);
 
    //Mat image_check_changed = Change_image(image_check);
    //("temp", temp);
    if (show_picture) 
        imshow("image_check_changed", image_check_changed);
 
    int minHessian = 500;
    Ptr<SURF> detector = SURF::create(minHessian);    // surf
    // Ptr<SIFT> detector = SIFT::create(minHessian); // sift
 
    vector<KeyPoint> keypoints_obj;
    vector<KeyPoint> keypoints_scene;
    Mat descriptor_obj, descriptor_scene;
 
 
    clock_t startTime, endTime;
    startTime = clock();
 
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    // cout << "extract ORB cost = " << time_used.count() * 1000 << " ms " << endl;
    detector->detectAndCompute(temp, Mat(), keypoints_obj, descriptor_obj);
    detector->detectAndCompute(image_check_changed, Mat(), keypoints_scene, descriptor_scene);
    cout << "detect " << keypoints_obj.size() << " and " << keypoints_scene.size() << " keypoints " << endl;
 
    // matching
    FlannBasedMatcher matcher;
    vector<DMatch> matches;
    matcher.match(descriptor_obj, descriptor_scene, matches);
 
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "extract and match cost = " << time_used.count() * 1000 << " ms " << endl;
 
    //求最小最大距离
    double minDist = 1000;
    double maxDist = 0;
    //row--行 col--列
    for (int i = 0; i < descriptor_obj.rows; i++)
    {
        double dist = matches[i].distance;
        if (dist > maxDist)
        {
            maxDist = dist;
        }
        if (dist < minDist)
        {
            minDist = dist;
        }
    }
    // printf("max distance : %f\n", maxDist);
    // printf("min distance : %f\n", minDist);
 
    // find good matched points
    vector<DMatch> goodMatches;
    for (int i = 0; i < descriptor_obj.rows; i++)
    {
        double dist = matches[i].distance;
        if (dist < max(2 * minDist, 0.15))
        {
            goodMatches.push_back(matches[i]);
        }
    }
    //rectangle(temp, Point(1, 1), Point(177, 157), Scalar(0, 0, 255), 8, 0);
 
    cout << "match " << goodMatches.size() << " keypoints " << endl;
    endTime = clock();
    // cout << "took time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC * 1000 << " ms" << endl;
 
    Mat matchesImg;
    drawMatches(temp, keypoints_obj, image_check_changed, keypoints_scene, goodMatches, matchesImg, Scalar::all(-1),
                Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
    if (show_picture) 
        imshow("Flann Matching Result01", matchesImg);
    // imwrite("C:/Users/Administrator/Desktop/matchesImg04.jpg", matchesImg);
 
    //求h
    std::vector<Point2f> points1, points2;
 
    //保存对应点
    for (size_t i = 0; i < goodMatches.size(); i++)
    {
        //queryIdx是对齐图像的描述子和特征点的下标。
        points1.push_back(keypoints_obj[goodMatches[i].queryIdx].pt);
        //queryIdx是是样本图像的描述子和特征点的下标。
        points2.push_back(keypoints_scene[goodMatches[i].trainIdx].pt);
    }
 
    // Find homography 计算Homography,RANSAC随机抽样一致性算法
    Mat H = findHomography(points1, points2, RANSAC);
    //imwrite("C:/Users/Administrator/Desktop/C-train/C-train/result/sift/Image4_SURF_MinHessian1000_ minDist1000_a0.9b70.jpg", matchesImg);
 
    vector<Point2f> obj_corners(4);
    vector<Point2f> scene_corners(4);
    obj_corners[0] = Point(0, 0);
    obj_corners[1] = Point(temp.cols, 0);
    obj_corners[2] = Point(temp.cols, temp.rows);
    obj_corners[3] = Point(0, temp.rows);
 
    //透视变换(把斜的图片扶正)
    perspectiveTransform(obj_corners, scene_corners, H);
    //Mat dst;
    cvtColor(image_check_changed, image_check_changed, COLOR_GRAY2BGR);
    line(image_check_changed, scene_corners[0], scene_corners[1], Scalar(0, 0, 255), 2, 8, 0);
    line(image_check_changed, scene_corners[1], scene_corners[2], Scalar(0, 0, 255), 2, 8, 0);
    line(image_check_changed, scene_corners[2], scene_corners[3], Scalar(0, 0, 255), 2, 8, 0);
    line(image_check_changed, scene_corners[3], scene_corners[0], Scalar(0, 0, 255), 2, 8, 0);
 
 
    if (show_picture)
    {
        Mat outimg1;
        Mat temp_color = imread(picture1, CV_LOAD_IMAGE_COLOR);
        drawKeypoints(temp_color, keypoints_obj, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
        imshow("SURF features", outimg1);
    }
 
    if (show_picture) 
        imshow("Draw object", image_check_changed);
    // imwrite("C:/Users/Administrator/Desktop/image04.jpg", image_check_changed);
 
    // t = ((double)getTickCount() - t) / getTickFrequency();
    // printf("averagetime:%f\n", t);
    if (show_picture) 
        waitKey(0);
}
void extract_AKAZE(string picture1,string picture2)
{
    //读取图片
    Mat temp = imread(picture1,IMREAD_GRAYSCALE);
    Mat image_check_changed = imread(picture2,IMREAD_GRAYSCALE);
    //如果不能读到其中任何一张图片,则打印不能下载图片
    if(!temp.data || !image_check_changed.data)
    {
        printf("could not load iamges...\n");
        return;
    }
    resize(temp,temp,Size(),picture1_size_change,picture1_size_change);
    resize(image_check_changed,image_check_changed,Size(),picture2_size_change,picture2_size_change);
 
    //Mat image_check_changed = Change_image(image_check);
    //("temp", temp);
 
    if(show_picture)
    {
        imshow("image_checked_changed",image_check_changed);
    }
    
    int minHessian=500;
    Ptr<AKAZE> detector=AKAZE::create();//AKAZE
 
    vector<keypoint> keypoints_obj;
    vector<keypoint> keypoints_scene;
    Mat descriptor_obj,descriptor_scene;
 
 
    clock_t startTime,endTime;
    startTime=clock();
 
    chrono::steady_clock::time_point t1=chrono::steady_clock::now();
    detector->detectAndCompute(temp,Mat(),keypoints_obj,descriptor_obj);
    detector->detectAndCompute(image_check_changed,Mat(),keypoints_scene,descriptor_scene);
    cout<<" detect "<<keypoints_obj.size()<<" and "<<keypoints_scene.size<<" keypoints "<<endl;
 
    //matching
    FlannBasedMatcher matcher;
    vector<DMatch> matches;
    matcher.match(descriptor_obj,descriptor_scene,matches);
 
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2-t1);
    cout << "extract and match cost = " << time_used.count()*1000<<" ms "<<endl;
 
    //求最小最大距离
    double minDist = 1000;
    double max_dist = 0;
    //row--行 col--列
    for(int i=0;i<descriptor_obj.rows;i++)
    {
        double dist = match[i].distance;
        if(dist > maxDist)
        {
            maxDist = dist;
        }
        if(dist<minDist)
        {
            minDist = dist;
        }
    }
    // printf("max distance : %f\n", maxDist);
    // printf("min distance : %f\n", minDist);
 
    // find good matched points
    vector<DMatch> goodMatches;
    for(imt i=0;i<descriptor_obj.rows;i++)
    {
        double dist = matches[i].distance;
        if(dist < max(5 * minDist,1.0))
        {
        goodMatches.push_back(matches[i]);
        }
    }
    //rectangle(temp, Point(1, 1), Point(177, 157), Scalar(0, 0, 255), 8, 0);
    cout<<" match "<<goodMatches.size()<<" keypoints "<<endl;
    endTime = clock();
    // cout << "took time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC * 1000 << " ms" << endl;
    
    Mat matchesImg;
    drawMatches(temp,keypoints_obj,image_check_changed,keypoints_scene,goodMatches,
    matchesImg,Scalar::all(-1),
                   Scalar::all(-1),vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
    if(show_picture)
       imshow("Flann Matching Result01",matchesImg);
    
    // imwrite("C:/Users/Administrator/Desktop/matchesImg04.jpg", matchesImg);
 
    //求h   
    std::vector<Point2f> points1,points2;
 
    //保存对应点
    for(size_t i = 0;i < goodMatches.size();i++)
    {
       //queryIdx是对齐图像的描述子和特征点的下标。
        points1.push_back(keypoints_obj[goodMatches[i].queryIdx].pt);
        //queryIdx是是样本图像的描述子和特征点的下标。
        points2.push_back(keypoints_scene[goodMatches[i].trainIdx].pt);  
    }
    // Find homography 计算Homography,RANSAC随机抽样一致性算法
    Mat H = findHomography(points1,points2,RANSAC);
   //imwrite("C:/Users/Administrator/Desktop/C-train/C-train/result/sift/Image4_SURF_MinHessian1000_ minDist1000_a0.9b70.jpg", matchesImg);
 
   vector<Point2f> obj_corners(4);
   vector<Point2f> scene_corners(4);
   obj_corners[0] = Point(0,0);
   obj_corners[0] = Point(temp.count,0);
   obj_corners[0] = Point(temp.cols,temp.rows);
   obj_corners[0] = Point(0,temp.rows);
 
   //透视变换(把斜的图片扶正)
   perspectiveTransform(obj_corners,scene_corners,H);
   //Mat dst
   cvtColor(image_check_changed,image_check_changed,COLOR_GRAY2BGR);
   line(image_check_changed,scene_corners[0],scene_corners[1],Scalar(0,0,255),2,8,0);
   line(image_check_changed,scene_corners[1],scene_corners[2],Scalar(0,0,255),2,8,0);
   line(image_check_changed,scene_corners[2],scene_corners[3],Scalar(0,0,255),2,8,0);
   line(image_check_changed,scene_corners[3],scene_corners[0],Scalar(0,0,255),2,8,0); 
 
   if(show_picture)
   {
       Mat outimg1;
       Mat temp_color = imread(picture1,CV_LOAD_IMAGE_COLOR);
       drawKeypoints(temp_color,keypoints_obj,outimg1,Scalar::all(-1),DrawMatchesFlags::DEFAULT);
       imshow("AKAZE features",outimg1);
   }
   if(show_picture)
      waitKey(0);
}
 
void extract_ORB(string picture1, string picture2)
{
    Mat img_1 = imread(picture1);
Mat img_2 = imread(picture2);
 
    resize(img_1, img_1, Size(), picture1_size_change, picture1_size_change);
    resize(img_2, img_2, Size(), picture2_size_change, picture2_size_change);
 
if (!img_1.data || !img_2.data)
{
cout << "error reading images " << endl;
return ;
}
 
vector<Point2f> recognized;
vector<Point2f> scene;
 
recognized.resize(1000);
scene.resize(1000);
 
Mat d_srcL, d_srcR;
 
Mat img_matches, des_L, des_R;
//ORB算法的目标必须是灰度图像
cvtColor(img_1, d_srcL, COLOR_BGR2GRAY);//CPU版的ORB算法源码中自带对输入图像灰度化,此步可省略
cvtColor(img_2, d_srcR, COLOR_BGR2GRAY);
 
Ptr<ORB> d_orb = ORB::create(1500);
 
Mat d_descriptorsL, d_descriptorsR, d_descriptorsL_32F, d_descriptorsR_32F;
 
vector<KeyPoint> keyPoints_1, keyPoints_2;
 
//设置关键点间的匹配方式为NORM_L2,更建议使用 FLANNBASED = 1, BRUTEFORCE = 2, BRUTEFORCE_L1 = 3, BRUTEFORCE_HAMMING = 4, BRUTEFORCE_HAMMINGLUT = 5, BRUTEFORCE_SL2 = 6 
Ptr<DescriptorMatcher> d_matcher = DescriptorMatcher::create(NORM_L2);
 
std::vector<DMatch> matches;//普通匹配
std::vector<DMatch> good_matches;//通过keyPoint之间距离筛选匹配度高的匹配结果
 
    clock_t startTime, endTime;
    startTime = clock();
 
 
 
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
d_orb -> detectAndCompute(d_srcL, Mat(), keyPoints_1, d_descriptorsL);
d_orb -> detectAndCompute(d_srcR, Mat(), keyPoints_2, d_descriptorsR);
    cout << "detect " << keyPoints_1.size() << " and " << keyPoints_2.size() << " keypoints " << endl;
    // endTime = clock();
    // cout << "took time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC * 1000 << " ms" << endl;
 
 
d_matcher -> match(d_descriptorsL, d_descriptorsR, matches);//L、R表示左右两幅图像进行匹配
 
    //计算匹配所需时间
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "extract and match cost = " << time_used.count() * 1000 << " ms " << endl;
 
 
int sz = matches.size();
double max_dist = 0; double min_dist = 100;
 
for (int i = 0; i < sz; i++)
{
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
  
for (int i = 0; i < sz; i++)
{
if (matches[i].distance < 0.6*max_dist)
{
good_matches.push_back(matches[i]);
}
}
 
    cout << "match " << good_matches.size() << " keypoints " << endl;
    // endTime = clock();
    // cout << "took time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC * 1000 << " ms" << endl;
 
 
//提取良好匹配结果中在待测图片上的点集,确定匹配的大概位置
for (size_t i = 0; i < good_matches.size(); ++i)
{
scene.push_back(keyPoints_2[ good_matches[i].trainIdx ].pt);
}
 
for(unsigned int j = 0; j < scene.size(); j++)
cv::circle(img_2, scene[j], 2, cv::Scalar(0, 255, 0), 2);
//画出普通匹配结果
Mat ShowMatches;
drawMatches(img_1,keyPoints_1,img_2,keyPoints_2,matches,ShowMatches);
if (show_picture) 
        imshow("matches", ShowMatches);
// imwrite("matches.png", ShowMatches);
//画出良好匹配结果
Mat ShowGoodMatches;
drawMatches(img_1,keyPoints_1,img_2,keyPoints_2,good_matches,ShowGoodMatches);
if (show_picture) 
        imshow("good_matches", ShowGoodMatches);
// imwrite("good_matches.png", ShowGoodMatches);
//画出良好匹配结果中在待测图片上的点集
if (show_picture) 
        imshow("MatchPoints_in_img_2", img_2);
// imwrite("MatchPoints_in_img_2.png", img_2);
if (show_picture) 
        waitKey(0);
}
 
int main(int argc, char **argv)
{
    string picture1=string(argv[1]);
    string picture2=string(argv[2]);
    // string picture1 = "data/picture1/6.jpg";
    // string picture2 = "data/picture2/16.PNG";
 
    cout << "\nextract_ORB::" << endl;
    extract_ORB(picture1, picture2);
 
    cout << "\nextract_ORB::" << endl;
    extract_ORB2(picture1, picture2);
 
    cout << "\nextract_SURF::" << endl;
    extract_SURF(picture1, picture2);
 
      cout << "\nextract_AKAZE::" << endl;
    extract_AKAZE(picture1, picture2);
   
    cout << "\nextract_SIFT::" << endl;
    extract_SIFT(picture1, picture2);
    cout << "success!!" << endl;
}

CMakeLists.txt

CMAKE_MINIMUM_REQUIRED(VERSION 2.8.3)  # 设定版本
PROJECT(DescriptorCompare) # 设定工程名
SET(CMAKE_CXX_COMPILER "g++")  # 设定编译器
add_compile_options(-std=c++14)   #编译选项,选择c++版本
 
# 设定可执行二进制文件的目录(最后生成的可执行文件放置的目录)
SET(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR})
 
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -fpermissive -g -O3  -Wno-unused-function  -Wno-return-type")
 
find_package(OpenCV 3.0 REQUIRED)
 
 
message(STATUS "Using opencv version ${OpenCV_VERSION}")
find_package(Eigen3 3.3.8 REQUIRED)
find_package(Pangolin REQUIRED)
 
 
 
 
 
# 设定链接目录
LINK_DIRECTORIES(${PROJECT_SOURCE_DIR}/lib)
 
# 设定头文件目录
INCLUDE_DIRECTORIES(
    ${PROJECT_SOURCE_DIR}/include
    ${EIGEN3_INCLUDE_DIR}
    ${OpenCV_INCLUDE_DIR}
    ${Pangolin_INCLUDE_DIRS}
    )
    
 
add_library(${PROJECT_NAME}
test.cc
)
 
target_link_libraries( ${PROJECT_NAME}
${OpenCV_LIBS}
${EIGEN3_LIBS}
${Pangolin_LIBRARIES}
 
)
 
 
add_executable(main main.cpp )
target_link_libraries(main ${PROJECT_NAME} )
 
 
add_executable(icp icp.cpp )
target_link_libraries(icp ${PROJECT_NAME} )

执行效果

./main 1.png 2.png
extract_ORB::
detect 1500 and 1500 keypoints 
extract and match cost = 21.5506 ms 
match 903 keypoints 
 
extract_ORB::
detect 1304 and 1301 keypoints 
extract and match ORB cost = 25.4976 ms 
match 313 keypoints 
 
extract_SURF::
detect 915 and 940 keypoints 
extract and match cost = 53.8371 ms 
match 255 keypoints 
 
extract_SIFT::
detect 1536 and 1433 keypoints 
extract and match cost = 97.9322 ms 
match 213 keypoints 
success!!

如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法

如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法

如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法

如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法

如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法

如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法

如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法

如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法

ICP

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <Eigen/SVD>
 
#include <pangolin/pangolin.h>
#include <chrono>
 
 
using namespace std;
using namespace cv;
 
int picture_h=480;
int picture_w=640;
 
 
bool show_picture = true;
 
 
void find_feature_matches(
  const Mat &img_1, const Mat &img_2,
  std::vector<KeyPoint> &keypoints_1,
  std::vector<KeyPoint> &keypoints_2,
  std::vector<DMatch> &matches);
 
// 像素坐标转相机归一化坐标
Point2d pixel2cam(const Point2d &p, const Mat &K);
 
void pose_estimation_3d3d(
  const vector<Point3f> &pts1,
  const vector<Point3f> &pts2,
  Mat &R, Mat &t
);
 
 
 
int main(int argc, char **argv) {
  if (argc != 5) {
    cout << "usage: pose_estimation_3d3d img1 img2 depth2 depth3" << endl;
    return 1;
  }
  //-- 读取图像
  Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
  Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
 
  vector<KeyPoint> keypoints_1, keypoints_2;
  vector<DMatch> matches;
  find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
  cout << "picture1 keypoints: " << keypoints_1.size() << " \npicture2 keypoints: " << keypoints_2.size() << endl;
  cout << "一共找到了 " << matches.size() << " 组匹配点" << endl;
 
  // 建立3D点
  Mat depth2 = imread(argv[3], CV_8UC1);       // 深度图为16位无符号数,单通道图像
  Mat depth3 = imread(argv[4], CV_8UC1);       // 深度图为16位无符号数,单通道图像
  Mat K = (Mat_<double>(3, 3) << 595.2, 0, 328.9, 0, 599.0, 253.9, 0, 0, 1);
  vector<Point3f> pts1, pts2;
 
  for (DMatch m:matches) {
    int d1 = 255-(int)depth2.ptr<uchar>(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)];
    int d2 = 255-(int)depth3.ptr<uchar>(int(keypoints_2[m.trainIdx].pt.y))[int(keypoints_2[m.trainIdx].pt.x)];
    if (d1 == 0 || d2 == 0)   // bad depth
      continue;
    Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
    Point2d p2 = pixel2cam(keypoints_2[m.trainIdx].pt, K);
    float dd1 = int(d1) / 1000.0;
    float dd2 = int(d2) / 1000.0;
    pts1.push_back(Point3f(p1.x * dd1, p1.y * dd1, dd1));
    pts2.push_back(Point3f(p2.x * dd2, p2.y * dd2, dd2));
  }
 
  cout << "3d-3d pairs: " << pts1.size() << endl;
  Mat R, t;
  pose_estimation_3d3d(pts1, pts2, R, t);
 
 
 
 
 
//DZQ ADD
  cv::Mat Pose = (Mat_<double>(4, 4) << R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2), t.at<double>(0),
                  R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2), t.at<double>(1),
                  R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2), t.at<double>(2),
                  0, 0, 0, 1);
 
  cout << "[delete outliers] Matched objects distance: ";
  vector<double> vDistance;
  double allDistance = 0; //存储总距离,用来求平均匹配距离,用平均的误差距离来剔除外点
  for (int i = 0; i < pts1.size(); i++)
  {
    Mat point = Pose * (Mat_<double>(4, 1) << pts2[i].x, pts2[i].y, pts2[i].z, 1);
    double distance = pow(pow(pts1[i].x - point.at<double>(0), 2) + pow(pts1[i].y - point.at<double>(1), 2) + pow(pts1[i].z - point.at<double>(2), 2), 0.5);
    vDistance.push_back(distance);
    allDistance += distance;
    // cout << distance << " ";
  }
  // cout << endl;
  double avgDistance = allDistance / pts1.size(); //求一个平均距离
  int N_outliers = 0;
  for (int i = 0, j = 0; i < pts1.size(); i++, j++) //i用来记录剔除后vector遍历的位置,j用来记录原位置
  {
    if (vDistance[i] > 1.5 * avgDistance) //匹配物体超过平均距离的N倍就会被剔除 [delete outliers]  DZQ FIXED_PARAM
    {
      N_outliers++;
    }
  }
  cout << "N_outliers:: " << N_outliers << endl;
 
 
 
 
 
 
  // show points
  {
    //创建一个窗口
    pangolin::CreateWindowAndBind("show points", 640, 480);
    //启动深度测试
    glEnable(GL_DEPTH_TEST);
 
    // Define Projection and initial ModelView matrix
    pangolin::OpenGlRenderState s_cam(
        pangolin::ProjectionMatrix(640, 480, 420, 420, 320, 240, 0.05, 500),
        //对应的是gluLookAt,摄像机位置,参考点位置,up vector(上向量)
        pangolin::ModelViewLookAt(0, -5, 0.1, 0, 0, 0, pangolin::AxisY));
 
    // Create Interactive View in window
    pangolin::Handler3D handler(s_cam);
    //setBounds 跟opengl的viewport 有关
    //看SimpleDisplay中边界的设置就知道
    pangolin::View &d_cam = pangolin::CreateDisplay()
                                .SetBounds(0.0, 1.0, 0.0, 1.0, -640.0f / 480.0f)
                                .SetHandler(&handler);
 
    while (!pangolin::ShouldQuit())
    {
 
      // Clear screen and activate view to render into
      glClearColor(0.97,0.97,1.0, 1); //背景色
 
      glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
      d_cam.Activate(s_cam);
 
 
      glBegin(GL_POINTS);  //绘制匹配点
      glLineWidth(5);
      for (int i = 0; i < pts1.size(); i++)
      {
        glColor3f(1, 0, 0);
        glVertex3d(pts1[i].x,pts1[i].y,pts1[i].z);
        Mat point = Pose * (Mat_<double>(4, 1) << pts2[i].x, pts2[i].y, pts2[i].z, 1);
        glColor3f(0, 1, 0);
        glVertex3d(point.at<double>(0),point.at<double>(1),point.at<double>(2));
      }
      glEnd();
 
 
      glBegin(GL_LINES);    //绘制匹配线
      glLineWidth(1);
      for (int i = 0; i < pts1.size(); i++)
      {
        glColor3f(0, 0, 1);
        glVertex3d(pts1[i].x,pts1[i].y,pts1[i].z);
        Mat point = Pose * (Mat_<double>(4, 1) << pts2[i].x, pts2[i].y, pts2[i].z, 1);
        glVertex3d(point.at<double>(0),point.at<double>(1),point.at<double>(2));
      }
      glEnd();
 
 
 
 
      glBegin(GL_POINTS);    //绘制所有点
      glLineWidth(5);
      glColor3f(1, 0.5, 0);
      for (int i = 0; i < picture_h; i+=2)
      {
        for (int j = 0; j < picture_w; j+=2)
        {
          int d1 = 255-(int)depth2.ptr<uchar>(i)[j];
          if (d1 == 0) // bad depth
            continue;
          Point2d temp_p;
          temp_p.y=i;    //这里的x和y应该和i j相反
          temp_p.x=j;
          Point2d p1 = pixel2cam(temp_p, K);
          float dd1 = int(d1) / 1000.0;
          glVertex3d(p1.x * dd1, p1.y * dd1, dd1);
          // glVertex3d(j/1000.0, i/1000.0, d1/200.0);
        }
      }
      glEnd();
 
 
 
      // Swap frames and Process Events
      pangolin::FinishFrame();
    }
  }
}
 
void find_feature_matches(const Mat &img_1, const Mat &img_2,
                          std::vector<KeyPoint> &keypoints_1,
                          std::vector<KeyPoint> &keypoints_2,
                          std::vector<DMatch> &matches) {
  //-- 初始化
  Mat descriptors_1, descriptors_2;
  // used in OpenCV3
  Ptr<FeatureDetector> detector = ORB::create(2000,(1.200000048F), 8, 100);
  Ptr<DescriptorExtractor> descriptor = ORB::create(5000);
  
  Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
  //-- 第一步:检测 Oriented FAST 角点位置
  detector->detect(img_1, keypoints_1);
  detector->detect(img_2, keypoints_2);
 
  //-- 第二步:根据角点位置计算 BRIEF 描述子
  descriptor->compute(img_1, keypoints_1, descriptors_1);
  descriptor->compute(img_2, keypoints_2, descriptors_2);
 
  //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
  vector<DMatch> match;
  // BFMatcher matcher ( NORM_HAMMING );
  matcher->match(descriptors_1, descriptors_2, match);
 
  //-- 第四步:匹配点对筛选
  double min_dist = 10000, max_dist = 0;
 
  //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
  for (int i = 0; i < descriptors_1.rows; i++) {
    double dist = match[i].distance;
    if (dist < min_dist) min_dist = dist;
    if (dist > max_dist) max_dist = dist;
  }
 
  printf("-- Max dist : %f \n", max_dist);
  printf("-- Min dist : %f \n", min_dist);
 
  //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
  for (int i = 0; i < descriptors_1.rows; i++) {
    if (match[i].distance <= max(2 * min_dist, 30.0)) {
      matches.push_back(match[i]);
    }
  }
 
  //-- 第五步:绘制匹配结果
  if(show_picture)
  {
 
    Mat img_match;
    Mat img_goodmatch;
    drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match);
    imshow("all matches", img_match);
    waitKey(0);
  }
}
 
Point2d pixel2cam(const Point2d &p, const Mat &K) {
  return Point2d(
    (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
    (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
  );
}
 
void pose_estimation_3d3d(const vector<Point3f> &pts1,
                          const vector<Point3f> &pts2,
                          Mat &R, Mat &t) {
  Point3f p1, p2;     // center of mass
  int N = pts1.size();
  for (int i = 0; i < N; i++) {
    p1 += pts1[i];
    p2 += pts2[i];
  }
  p1 = Point3f(Vec3f(p1) / N);
  p2 = Point3f(Vec3f(p2) / N);
  vector<Point3f> q1(N), q2(N); // remove the center
  for (int i = 0; i < N; i++) {
    q1[i] = pts1[i] - p1;
    q2[i] = pts2[i] - p2;
  }
 
  // compute q1*q2^T
  Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
  for (int i = 0; i < N; i++) {
    W += Eigen::Vector3d(q1[i].x, q1[i].y, q1[i].z) * Eigen::Vector3d(q2[i].x, q2[i].y, q2[i].z).transpose();
  }
  // cout << "W=" << W << endl;
 
  // SVD on W
  Eigen::JacobiSVD<Eigen::Matrix3d> svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV);
  Eigen::Matrix3d U = svd.matrixU();
  Eigen::Matrix3d V = svd.matrixV();
 
 
  Eigen::Matrix3d R_ = U * (V.transpose());
  if (R_.determinant() < 0) {
    R_ = -R_;
  }
  Eigen::Vector3d t_ = Eigen::Vector3d(p1.x, p1.y, p1.z) - R_ * Eigen::Vector3d(p2.x, p2.y, p2.z);
 
  // convert to cv::Mat
  R = (Mat_<double>(3, 3) <<
    R_(0, 0), R_(0, 1), R_(0, 2),
    R_(1, 0), R_(1, 1), R_(1, 2),
    R_(2, 0), R_(2, 1), R_(2, 2)
  );
  t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0));
}
 
 
 
 
 
void convertRGB2Gray(string picture)
{
 
 
	double min;
	double max;
  Mat depth_new_1 = imread(picture);       // 深度图为16位无符号数,单通道图像
	
Mat test=Mat(20,256,CV_8UC3);
	int s;
	for (int i = 0; i < 20; i++) {
  std::cout<<i<<" ";
 
		Vec3b* p = test.ptr<Vec3b>(i);
		for (s = 0; s < 32; s++) {
			p[s][0] = 128 + 4 * s;
			p[s][1] = 0;
			p[s][2] = 0;
		}
		p[32][0] = 255;
		p[32][1] = 0;
		p[32][2] = 0;
		for (s = 0; s < 63; s++) {
			p[33+s][0] = 255;
			p[33+s][1] = 4+4*s;
			p[33+s][2] = 0;
		}
		p[96][0] = 254;
		p[96][1] = 255;
		p[96][2] = 2;
		for (s = 0; s < 62; s++) {
			p[97 + s][0] = 250 - 4 * s;
			p[97 + s][1] = 255;
			p[97 + s][2] = 6+4*s;
		}
		p[159][0] = 1;
		p[159][1] = 255;
		p[159][2] = 254;
		for (s = 0; s < 64; s++) {
			p[160 + s][0] = 0;
			p[160 + s][1] = 252 - (s * 4);
			p[160 + s][2] = 255;
		}
		for (s = 0; s < 32; s++) {
			p[224 + s][0] = 0;
			p[224 + s][1] = 0;
			p[224 + s][2] = 252-4*s;
		}
	}
 
  cout<<"depth_new_1 :: "<<depth_new_1.cols<<" "<<depth_new_1.rows<<" "<<endl;
 
 
Mat img_g=Mat(picture_h,picture_w,CV_8UC1);
for(int i=0;i<picture_h;i++)
{
 
  Vec3b *p = test.ptr<Vec3b>(0);
  Vec3b *q = depth_new_1.ptr<Vec3b>(i);
  for (int j = 0; j < picture_w; j++)
  {
    
    for(int k=0;k<256;k++)
    {
      if ( (((int)p[k][0] - (int)q[j][0] < 4) && ((int)q[j][0] - (int)p[k][0] < 4))&&
           (((int)p[k][1] - (int)q[j][1] < 4) && ((int)q[j][1] - (int)p[k][1] < 4))&&
           (((int)p[k][2] - (int)q[j][2] < 4) && ((int)q[j][2] - (int)p[k][2] < 4)))
     
      {
        img_g.at<uchar>(i,j)=k;
      }
    }
  }
}
 
	imwrite("14_Depth_3.png", img_g);
	waitKey();
 
 
}

CMakeLists.txt

和上面一样。

./icp 1.png 2.png 1_depth.png 2_depth.png
-- Max dist : 87.000000 
-- Min dist : 4.000000 
picture1 keypoints: 1304 
picture2 keypoints: 1301
一共找到了 313 组匹配点
3d-3d pairs: 313
[delete outliers] Matched objects distance: N_outliers:: 23

执行效果

如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法

以上就是如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注行业资讯频道。

内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/157910.html

(0)

相关推荐

  • audit审计什么意思(audit审计数据库)

    技术audit审计方法是什么本篇内容介绍了“audit审计方法是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成! au

    攻略 2021年12月22日
  • oracle序列达到了最大值处理的示例分析

    技术oracle序列达到了最大值处理的示例分析这篇文章主要介绍了oracle序列达到了最大值处理的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。客

    攻略 2021年12月13日
  • 含卧字的成语典故,卧字的成语典故是什么主人公是

    技术含卧字的成语典故,卧字的成语典故是什么主人公是典故含卧字的成语典故:春秋时期,吴越两邻国,经常打仗,有次吴王领兵攻打越国,被越王勾践的大将砍中了右脚,最后伤重而亡。吴王死后,他的儿子夫差继位。三年以后,夫差带兵前去攻

    生活 2021年10月29日
  • 如何使用系统SQL实体自动创建非聚集索引

    技术如何使用系统SQL实体自动创建非聚集索引小编给大家分享一下如何使用系统SQL实体自动创建非聚集索引,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一

    攻略 2021年11月23日
  • python怎么制作自己的一个图形(python图形绘制的代码)

    技术Python 图形绘制详细代码怎么写这篇文章给大家介绍Python 图形绘制详细代码怎么写,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。1、条形图下面介绍条形图的画法。1.1 代码import

    攻略 2021年12月23日
  • 美国企业云服务器中的关键功能

    技术美国企业云服务器中的关键功能并非每个美国云服务器都会为您的企业提供相同的功能集。在为您的企业选择完美的美国云服务器环境时,您需要注意某些能够帮助您获得最佳性能、可扩展性和安全性的功能。1. 稳固的服务器网络 美国云服

    礼包 2021年11月9日