正确写SQL的方法有哪些

技术正确写SQL的方法有哪些这篇文章主要介绍“正确写SQL的方法有哪些”,在日常操作中,相信很多人在正确写SQL的方法有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”正确写SQL的方法

本文主要介绍“正确编写SQL的方法有哪些”。在日常操作中,相信很多人对正确编写SQL的方法有所怀疑。边肖查阅了各种资料,整理出简单易用的操作方法,希望能帮助大家解答“正确写SQL有哪些方法”的疑惑!接下来,请和边肖一起学习!

先列出sql语句的执行顺序:

左表

安大略

连接条件

联接类型

加入

右表

在哪里

where _条件

GROUPBY

分组依据列表

拥有

有条件

挑选

明显的

选择列表

ORDERBY

订单条件

限制

Limit_number

1、LIMIT 语句

分页查询是最常用的场景之一,但通常也是最容易出现问题的。例如,对于下面的简单语句,一般数据库管理员的想法是向类型、名称和create _ time字段添加复合索引。这样,索引可以有效地用于条件排序,性能得到快速提高。选择*

FROMoperation

WHEREtype='SQLStats '

和name='SlowLog '

ORDERBYcreate_time

LIMIT1000,10;嗯,也许超过90%的数据库管理员解决了这个问题。但是,当LIMIT子句变成“LIMIT 1000000,10”的时候,程序员还是会抱怨:为什么我还是迟迟拿不到10条记录?

重要的是要知道数据库不知道第100000条记录从哪里开始,即使有索引,也需要从头开始计算。在大多数情况下,当出现这种性能问题时,程序员是懒惰的。

在前端数据浏览翻页或大数据批量导出等场景下,可以将上一页的最大值作为参数作为查询条件。SQL的重新设计如下:

选择*

FROMoperation

WHEREtype='SQLStats '

和name='SlowLog '

和create _ time ' 2017-03-1614:00:00 '

ORDERBYcreate _ timelimit10新设计下,查询时间基本固定,不会随着数据量的增加而改变。

2、隐式转换

SQL语句中查询变量和字段定义类型不匹配是另一个常见错误。例如,以下语句:

MySQL说明扩展选择*

FROMmy_balanceb

其中b.bpn=14000000123

和ANDb.isverifiedISNULL

mysqlshowwarnings

|警告| 1739 | Cannotuserefa

ccess on index 'bpn' due to type or collation conversion on field 'bpn'

其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

3、关联更新、删除

虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。

比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。

UPDATE operation o
SET    status = 'applying'
WHERE  o.id IN (SELECT id
                FROM   (SELECT o.id,
                               o.status
                        FROM   operation o
                        WHERE  o.group = 123
                               AND o.status NOT IN ( 'done' )
                        ORDER  BY o.parent,
                                  o.id
                        LIMIT  1) t);

执行计划:

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| id | select_type        | table | type  | possible_keys | key     | key_len | ref   | rows | Extra                                               |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| 1  | PRIMARY            | o     | index |               | PRIMARY | 8       |       | 24   | Using where; Using temporary                        |
| 2  | DEPENDENT SUBQUERY |       |       |               |         |         |       |      | Impossible WHERE noticed after reading const tables |
| 3  | DERIVED            | o     | ref   | idx_2,idx_5   | idx_5   | 8       | const | 1    | Using where; Using filesort                         |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒。

UPDATE operation o
       JOIN  (SELECT o.id,
                            o.status
                     FROM   operation o
                     WHERE  o.group = 123
                            AND o.status NOT IN ( 'done' )
                     ORDER  BY o.parent,
                               o.id
                     LIMIT  1) t
         ON o.id = t.id
SET    status = 'applying'

执行计划简化为:

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key   | key_len | ref   | rows | Extra                                               |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| 1  | PRIMARY     |       |      |               |       |         |       |      | Impossible WHERE noticed after reading const tables |
| 2  | DERIVED     | o     | ref  | idx_2,idx_5   | idx_5 | 8       | const | 1    | Using where; Using filesort                         |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

4、混合排序

MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

SELECT *
FROM   my_order o
       INNER JOIN my_appraise a ON a.orderid = o.id
ORDER  BY a.is_reply ASC,
          a.appraise_time DESC
LIMIT  0, 20

执行计划显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| id | select_type | table | type   | possible_keys     | key     | key_len | ref      | rows    | Extra
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
|  1 | SIMPLE      | a     | ALL    | idx_orderid | NULL    | NULL    | NULL    | 1967647 | Using filesort |
|  1 | SIMPLE      | o     | eq_ref | PRIMARY     | PRIMARY | 122     | a.orderid |       1 | NULL           |
+----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+

由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

SELECT *
FROM   ((SELECT *
         FROM   my_order o
                INNER JOIN my_appraise a
                        ON a.orderid = o.id
                           AND is_reply = 0
         ORDER  BY appraise_time DESC
         LIMIT  0, 20)
        UNION ALL
        (SELECT *
         FROM   my_order o
                INNER JOIN my_appraise a
                        ON a.orderid = o.id
                           AND is_reply = 1
         ORDER  BY appraise_time DESC
         LIMIT  0, 20)) t
ORDER  BY  is_reply ASC,
          appraisetime DESC
LIMIT  20;

5、EXISTS语句

MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:

SELECT *
FROM   my_neighbor n
       LEFT JOIN my_neighbor_apply sra
              ON n.id = sra.neighbor_id
                 AND sra.user_id = 'xxx'
WHERE  n.topic_status < 4
       AND EXISTS(SELECT 1
                  FROM   message_info m
                  WHERE  n.id = m.neighbor_id
                         AND m.inuser = 'xxx')
       AND n.topic_type <> 5

执行计划为:

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+
| id | select_type        | table | type | possible_keys     | key   | key_len | ref   | rows    | Extra   |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
|  1 | PRIMARY            | n     | ALL  |  | NULL     | NULL    | NULL  | 1086041 | Using where                   |
|  1 | PRIMARY            | sra   | ref  |  | idx_user_id | 123     | const |       1 | Using where          |
|  2 | DEPENDENT SUBQUERY | m     | ref  |  | idx_message_info   | 122     | const |       1 | Using index condition; Using where |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

SELECT *
FROM   my_neighbor n
       INNER JOIN message_info m
               ON n.id = m.neighbor_id
                  AND m.inuser = 'xxx'
       LEFT JOIN my_neighbor_apply sra
              ON n.id = sra.neighbor_id
                 AND sra.user_id = 'xxx'
WHERE  n.topic_status < 4
       AND n.topic_type <> 5

新的执行计划:

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| id | select_type | table | type   | possible_keys     | key       | key_len | ref   | rows | Extra                 |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
|  1 | SIMPLE      | m     | ref    | | idx_message_info   | 122     | const    |    1 | Using index condition |
|  1 | SIMPLE      | n     | eq_ref | | PRIMARY   | 122     | ighbor_id |    1 | Using where      |
|  1 | SIMPLE      | sra   | ref    | | idx_user_id | 123     | const     |    1 | Using where           |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

6、条件下推

外部查询条件不能够下推到复杂的视图或子查询的情况有:

1、聚合子查询;2、含有 LIMIT 的子查询;3、UNION 或 UNION ALL 子查询;4、输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT *
FROM   (SELECT target,
               Count(*)
        FROM   operation
        GROUP  BY target) t
WHERE  target = 'rm-xxxx'

+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table      | type  | possible_keys | key         | key_len | ref   | rows | Extra       |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
|  1 | PRIMARY     | <derived2> | ref   | <auto_key0>   | <auto_key0> | 514     | const |    2 | Using where |
|  2 | DERIVED     | operation  | index | idx_4         | idx_4       | 519     | NULL  |   20 | Using index |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

确定从语义上查询条件可以直接下推后,重写如下:

SELECT target,
       Count(*)
FROM   operation
WHERE  target = 'rm-xxxx'
GROUP  BY target

执行计划变为:

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

关于 MySQL 外部条件不能下推的详细解释说明请参考以前文章:MySQL · 性能优化 · 条件下推到物化表http://mysql.taobao.org/monthly/2016/07/08

7、提前缩小范围

先上初始 SQL 语句:

SELECT *
FROM   my_order o
       LEFT JOIN my_userinfo u
              ON o.uid = u.uid
       LEFT JOIN my_productinfo p
              ON o.pid = p.pid
WHERE  ( o.display = 0 )
       AND ( o.ostaus = 1 )
ORDER  BY o.selltime DESC
LIMIT  0, 15

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| id | select_type | table | type   | possible_keys | key     | key_len | ref             | rows   | Extra                                              |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
|  1 | SIMPLE      | o     | ALL    | NULL          | NULL    | NULL    | NULL            | 909119 | Using where; Using temporary; Using filesort       |
|  1 | SIMPLE      | u     | eq_ref | PRIMARY       | PRIMARY | 4       | o.uid |      1 | NULL                                               |
|  1 | SIMPLE      | p     | ALL    | PRIMARY       | NULL    | NULL    | NULL            |      6 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。

SELECT *
FROM (
SELECT *
FROM   my_order o
WHERE  ( o.display = 0 )
       AND ( o.ostaus = 1 )
ORDER  BY o.selltime DESC
LIMIT  0, 15
) o
     LEFT JOIN my_userinfo u
              ON o.uid = u.uid
     LEFT JOIN my_productinfo p
              ON o.pid = p.pid
ORDER BY  o.selltime DESC
limit 0, 15

再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| id | select_type | table      | type   | possible_keys | key     | key_len | ref   | rows   | Extra                                              |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
|  1 | PRIMARY     | <derived2> | ALL    | NULL          | NULL    | NULL    | NULL  |     15 | Using temporary; Using filesort                    |
|  1 | PRIMARY     | u          | eq_ref | PRIMARY       | PRIMARY | 4       | o.uid |      1 | NULL                                               |
|  1 | PRIMARY     | p          | ALL    | PRIMARY       | NULL    | NULL    | NULL  |      6 | Using where; Using join buffer (Block Nested Loop) |
|  2 | DERIVED     | o          | index  | NULL          | idx_1   | 5       | NULL  | 909112 | Using where                                        |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

8、中间结果集下推

再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT    a.*,
          c.allocated
FROM      (
              SELECT   resourceid
              FROM     my_distribute d
                   WHERE    isdelete = 0
                   AND      cusmanagercode = '1234567'
                   ORDER BY salecode limit 20) a
LEFT JOIN
          (
              SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
              FROM     my_resources
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT    a.*,
          c.allocated
FROM      (
                   SELECT   resourceid
                   FROM     my_distribute d
                   WHERE    isdelete = 0
                   AND      cusmanagercode = '1234567'
                   ORDER BY salecode limit 20) a
LEFT JOIN
          (
                   SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
                   FROM     my_resources r,
                            (
                                     SELECT   resourceid
                                     FROM     my_distribute d
                                     WHERE    isdelete = 0
                                     AND      cusmanagercode = '1234567'
                                     ORDER BY salecode limit 20) a
                   WHERE    r.resourcesid = a.resourcesid
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:

WITH a AS
(
         SELECT   resourceid
         FROM     my_distribute d
         WHERE    isdelete = 0
         AND      cusmanagercode = '1234567'
         ORDER BY salecode limit 20)
SELECT    a.*,
          c.allocated
FROM      a
LEFT JOIN
          (
                   SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
                   FROM     my_resources r,
                            a
                   WHERE    r.resourcesid = a.resourcesid
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

总结

数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。

上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。

程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。

编写复杂SQL语句要养成使用 WITH 语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 。

到此,关于“正确写SQL的方法有哪些”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注网站,小编会继续努力为大家带来更多实用的文章!

内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/43715.html

(0)

相关推荐

  • vxworks中ifconfig的用法(vxworks常用命令汇总文库)

    技术vxworks中ifconfig怎么用这篇文章将为大家详细讲解有关vxworks中ifconfig怎么用,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。 组件INCLUDE_IFCO

    攻略 2021年12月22日
  • Python源代码的编制技巧是什么

    技术Python源代码的编制技巧是什么本篇文章为大家展示了Python源代码的编制技巧是什么,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。下面进行详细说明Python源代码的编程

    攻略 2021年10月28日
  • 稳压二极管工作原理,稳压管的工作原理是什么

    技术稳压二极管工作原理,稳压管的工作原理是什么要理解稳压二极管的工作原理稳压二极管工作原理,只要了解二极管的反向特性就行了。所有的晶体二极管,其基本特性是单向导通。就是说,正向加压导通,反向加压不通。这里有个条件就是反向

    生活 2021年10月24日
  • 形容春天的词语四个字,春天是一个什么样的季节四字词语

    技术形容春天的词语四个字,春天是一个什么样的季节四字词语1形容春天的词语四个字、莺歌燕舞解释:黄莺歌唱,燕子飞舞,形容大好春光或比喻大好形势。2、春暖花开
    解释:春天气候温暖,百花盛开,景色优美。比喻游览、观赏的大好时机

    生活 2021年10月21日
  • Linux前台的程序如何转到后台执行并且关闭终端而不杀死命令

    技术Linux前台的程序如何转到后台执行并且关闭终端而不杀死命令这篇文章给大家介绍Linux前台的程序如何转到后台执行并且关闭终端而不杀死命令,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。过SSH或

    攻略 2021年10月21日
  • redis布隆过滤器是如何高效的(redis布隆过滤器支持版本)

    技术Redis中的布隆过滤器怎么实现这篇文章主要介绍“Redis中的布隆过滤器怎么实现”,在日常操作中,相信很多人在Redis中的布隆过滤器怎么实现问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家

    攻略 2021年12月23日