本文主要介绍“如何处理HDFS问题”。在日常操作中,我相信很多人对如何处理HDFS问题有疑问。边肖查阅了各种资料,整理出简单易用的操作方法,希望能帮助大家解决“如何处理HDFS问题”的疑惑!接下来,请和边肖一起学习!
1. 定期block全盘扫描,引起dn心跳超时而脱离集群
hdfs有目录扫描机制。默认情况下,所有块将每6小时扫描一次,以确定它们是否与内存中的块图一致。涉及
https://blog . cloud era.com/HDFS-data node-scanner-and-disk-checker-explained/
当小文件较多时,扫描时特征明显。——磁盘的iops很高,但吞吐量很低。当然,这不是datanode心跳超时的原因,真正的原因是扫描后的结果。比如对比后发现有2万块不一致。当修复这些块时,它们会保持对对象FsDatasetImpl的锁定。如果磁盘速度较慢,可能需要5分钟甚至10分钟才能完成处理,从而一直阻塞读、写、心跳的线程。
您可以详细了解HDFS-14476在修复磁盘和内存中不一致的块时锁定时间过长,包括一些特性、证据和块修复逻辑,详情请见。
解决方案是,我们在这里添加了一个补丁(它已经合并到2.10和3.x中)。在处理异常块时,我们应该休息2秒钟来处理正常请求,以防止datanode卡住甚至离线。
修复后的效果也很明显,datanode的心跳也顺畅了很多。
2.名称节点迁移被取消,客户端无法写入。
本文结合HDFS取消命名节点的实践,总结了在线迁移HDFS命名节点的方法。迁移/取消的思路是保持namenode主机名不变,滚动迁移备用节点。
但在我们的迁移实践中发现,hdfs namenode迁移后,集群正常,但hdfs客户端访问异常。在像纱线这样的长任务场景中,文件读取和写入总是会失败,直到纱线节点管理器重新启动。
具体问题如下:
客户端使用configuredfailloverproxyprovider。客户端启动后,会根据当时的inetsocket创建两个namenode代理,nn1和nn2,在任何网络异常情况下都不会重新创建。
Client updateAddress方法可以检测到namenode ip已经更改,但是因为没有捕获到该异常,所以下次回收正确的namenode ip应该是正常的。但是,抛出异常后,客户端会重新连接namenode。但是上面的namenode代理仍然是旧地址,SetupConnection异常,进入updateAddress判断逻辑,返回true建立连接,陷入死锁。
复制步骤
打开一个hdfsclient,写一个长时间放的hdfs文件。
更新hdfs新名称节点主机名-ip。
停止旧nn2,启动新nn2
更新客户端的名称节点主机名-IP(客户端仍在操作文件)。
切换到新的名称节点HDFS ha admin-故障转移nn1nn2。
此时,您会发现客户端不断报告错误。
在纱线客户端启动的周期中,即使写入了新文件,仍然会报告错误。
修补configuredfailoverproxyprovider,即客户端故障转移后,进行updateAddress判断,如果有ip变化,则createProxy。请验证此修补程序是否也有效。但是,最好在客户端统一捕获,因为还有其他类型的HaProvider可能也有这个问题。
这个问题的补丁已经整合到Apache Hadoop 3.4中,参见Hadoop-17068客户端在NameNode IP addr改变时永远失败。我们使用的版本是2.6.0-cdh6.4.11,已经并入。
除了解决根本原因问题之外,在namenode迁移操作期间,还可以在旧节点上启用端口转发,然后可以逐个重新启动纱线,以避免造成大范围的故障。
3. 集群dn不均衡导致文件写入失败
现象:当集群将满时,批处理机的释放空间扩大。运行2周的客户端突然报告文件写入失败。
原因:当一些数据节点已满时,hdfs会自动选择其他可用的空闲节点。由于dfs.datanode.du.reserved的配置不正确,仍将选择完整节点。尤其是df。
s.datanode.du.reserved如果小于分区block reserved,在磁盘用满时就会出现
org.apache.hadoop.ipc.RemoteException(java.io.IOException): File
/kafka/xxxtmp.parquet could only be replicated to
0 nodes instead of minReplication
(=1). \
There are
14 datanode(s) running
and no node(s) are excluded
in this operation.
解决:
-
扩容完,跑rebalance
-
修改磁盘分区的block reserved,使其小于
dfs.datanode.du.reserved
. 见 hdfs datanode Non DFS Used与Remaining . -
增加单个datanode容量告警
4. 做 rebalance 时速度很慢
启动 rebalance 命令./start-balancer.sh -threshold 10
,如果需要提高速度可以修改限流带宽hdfs dfsadmin -setBalancerBandwidth 52428800
但是 datanode 上同时接收 blocks 并发数,是不能在线调整的(或者说只能调小),调整hdfs-site.xml
默认的balance参数,并重启
dfs.balancer.moverThreads=1000
dfs.balancer.dispatcherThreads=200
dfs.datanode.balance.max.concurrent.moves=50
如果启动balance时,尝试以更高的并发执行,datanode会判断没有足够的线程接收 block: IOException: Got error, status message Not able to copy block … because threads quota is exceeded。
当 move 出现失败时,迁移速度是指数级下降的,因为move block失败默认会sleep一段时间。
./start-balancer.sh
-threshold
5\
-Ddfs.datanode.balance.max.concurrent.moves=20 \
-Ddfs.datanode.balance.bandwidthPerSec=150000000 \
-Ddfs.balancer.moverThreads=500 \
-Ddfs.balancer.dispatcherThreads=100
5. 给datanode在线增加磁盘
腾讯云上的机器,可以直接在原有 datanode 上直接挂在新的磁盘,快速给hdfs扩容。
增加磁盘,不需要重启datanode。(前提是设置了 dfs.datanode.fsdataset.volume.choosing.policy
为AvailableSpaceVolumeChoosingPolicy
)
-
挂载后,先建立hadoop数据目录并修正权限
-
在
hdfs-site.xml
里加上新目录配置dfs.datanode.data.dir
-
可以使用 reconfig 命令使其生效:
hdfs dfsadmin -reconfig datanode dn-x-x-x-x:50020 start
6. namenode设置了HA,但故障时未成功切换
现象:active namenode 内存故障,主备切换失败
原因:dfs.ha.fencing.methods
设置为了ssh,但是并不能登录其他namenode执行fence
解决:生成ssh key,免密码登录。或者改成shell(/bin/true)
,强切。注意,修改fence方式后,需要重启zkfc。
7. hdfs client input/output error
现象:执行 hdfs
客户端命令报错 input/output error
,试着拷贝 hadoop / jdk 的介质目录,亦发现文件损坏。有时会发现 jvm core
原因:磁盘存在坏块,刚好hdfs或者jdk的 jar 库损坏。通过观察 messages 发现有 sda IO Input/Output Error
使用badblocks -s -v -o bb.log /dev/sda
可以看到磁盘损坏了哪些扇区
解决:从其他机器,拷贝一份正常的介质
8. hdfs误将 data 盘作为数据盘
误将系统盘作为了dfs.datanode.data.dir
,运行一段时间后,这个分区很容易最先满。
这个是配置上的问题,理解datanode的工作方式,可以快速的将这个分区里的block挪到正确的磁盘分区。
处理方法就是停止datanode,拷贝/data
block到其它分区,删掉/data
的配置。因为datanode上block的位置是每次启动的时候,扫描上报给namenode,所以可以做物理拷贝。
可以使用拷贝命令cp -a /data/hadoopdata/current/BP-*-*/current/finalized/* /data1/hadoopdata/current/BP-*-*/current/finalized/
,不能拷贝整个 hadoopdata 目录,因为VERSION文件里面的storageID不同。
9. 使用decomiss方式将datanode退服时,客户端读写异常
现象:将datanode加入 exclude ,正常 decomissing 的方式退役节点,应用层反馈 spark 任务部分异常,报错 Unable to close file because the last block doest not have enough number of replicas ,但该集群一些其它的文件读写任务正常。
原因:spark任务会频繁的创建、删除application目录。在decomissing时,部分磁盘性能低的节点,磁盘更加繁忙,导致出现 last contact 心跳时间长
解决:经过验证,发现直接 kill datanode进程的方式,不影响spark任务。但必须保证一个一个的kill,否则会出现 missing block. (这不一定是解决问题最好的办法,但的确有效)
10. namenode editlog 长时间未做checkpoint
standby namenode的一个作用是,定期合并从journalnode上获取的editlog,生成新的元数据fsimage,然后推送到active namenode。
当standby namenode出现异常,如进程退出、软件bug(比如我们遇到过 IOException: No image directories available!),导致长时间未合并editlog。一旦需要发生切换或者重启namenode,有可能导致启动时间过长,严重的editlog合并需要的内存不足,无法启动namenode.
如果内存不足,一种解决办法是借一台高内存临时机器合并editlog:
-
把standby停下来,将hdfs的软件介质和配置文件,拷贝到高内存机器
-
同时拷贝
dfs.namenode.name.dir
目录中最新能用的 fsimage_xxx 和它之后的所有 edits_xxx-xxx -
在临时机器上启动 namenode 进程,会自动从对应目录加载 fsiamge 、合并editlog
预防比补救要重要,一定要监控namenode上 TransactionsSinceLastCheckpoint
这个指标,我们的阈值是达到 5000000 就告警。
11. HDFS 3.x datanode 出现大量 CLOSE-WAIT
这个问题 HDFS-15402 是在定期对 datanode http://127.0.0.1:50075/jmx
jmx 进行探测的时候产生的,我们有 5 个 hadoop 3.1.3 的集群都存在该问题。在 hadoop 2.x 中正常。
50075 端口上产生过多 close-wait 的影响是,正常的 webhdfs 会出现 504 Gateway-timeout
[root@dn-9-4-xxx-yy
/tmp]# ss -ant|grep :50075 |grep CLOSE-WAIT|wc -l
16464
[root@dn-9-4-xxx-yy
/tmp]# ss -ant|grep :50075 |grep CLOSE-WAIT|head -3
CLOSE-WAIT
123 0 9.4.xxx.yy:50075
9.4.xxx.yy:39706
CLOSE-WAIT
123 0 9.4.xxx.yy:50075
9.4.xxx.yy:51710
CLOSE-WAIT
123 0 9.4.xxx.yy:50075
9.4.xxx.yy:47475
lsof
-i:39706
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
java 134304 hdfs
*307u IPv4 429yy7315 0t0 TCP dn-9-4-xxx-yy:50075->dn-9-4-xxx-yy:39706 (CLOSE_WAIT)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 123 0 9.4.xxx.yy:50075 9.4.xxx.yy:39706 CLOSE_WAIT 134304/java
CLOSE-WAIT 状态是客户端(curl)发起关闭tcp连接时,服务端(datanode)收到了FIN-ACK,但在关闭socket时一直没有完成。正常流程是关闭socket完成,然后向客户端发送FIN
所以问题出在datanode server上,与knox还是haproxy客户端没有关系。并且这个问题调整os内核参数是没有用的,除非kill datanode,否则close-wait状态会永久存在。使用网上的kill_close_wait_connections.pl
能够清理这些 close-wait,之后 webhdfs 请求变得好转。
目前避开的方法就是,不再请求 datanode jmx 做监控,只获取 namenode 上的指标。datanode 上采集 os 级别的指标。
12. knox 无法上传 8G 文件
在官方 jira 里我们提了这个问题 KNOX-2139,当我们使用 webhdfs with knox 上传 8589934592 bytes 大小的文件,会出现 (55) Send failure: Broken pipe,在 hdfs 只能看到一个空文件。而且在版本 knox 1.1, 1.2 中是必现,在 0.8 版本正常。
简单 debug 了一下代码,knox 拿到的请求 contentLength 为 0,8G 以外的情况 contentLength 为-1。
我们后来使用 haproxy 代替 knox 解决 knox 自身上传速度慢和这个 8G 文件的问题。在 备份系统上传优化:从knox到haproxy 有介绍我们的实现
不过在最新的 1.4 版本,8G问题又消失了。根据官方的恢复,可能跟 jetty 的升级有关。
13. Unable to load native-hadoop library for your platform
Unable to load native-hadoop library for your platform… using builtin-java classes
经常在执行 hdfs
客户端命令时会有这样的提示,其实是个老生常谈的问题。
简单说就是系统里没有找到原生的 hadoop 库 libhdfs.so
,这个库是 C 写的,性能比较好。缺少但不影响使用,因为 hadoop 里有 java 实现的客户端库。
出现这个我总结原因有 3 个:
-
hadoop 安装包里没有自带
libhdfs.so
这个情况占很大一部分。去到目录${HADOOP_HOME}/lib/native/
,看下是否有libhdfs.so,libhdfs.a,libhadoop.so,libhadoop.a。如果没有的话,可以重新下一个完整的二进制包,把lib/native
拷出来用
这种看到才是正常的
./bin/hadoop checknative
20/05/14 20:13:39 INFO bzip2.Bzip2Factory: Successfully loaded
& initialized native-bzip2 library system-native
20/05/14 20:13:39 INFO zlib.ZlibFactory: Successfully loaded
& initialized native-zlib library
Native library checking:
hadoop: true
/data1/hadoop-hdfs/hadoop-dist/target/hadoop-2.6.0-cdh6.4.11-tendata/lib/native/libhadoop.so.1.0.0
zlib: true
/lib64/libz.so.1
snappy: true
/data1/hadoop-hdfs/hadoop-dist/target/hadoop-2.6.0-cdh6.4.11-tendata/lib/native/libsnappy.so.1
lz4: true revision:10301
bzip2: true
/lib64/libbz2.so.1
openssl: true
/usr/lib64/libcrypto.so
实在不行就在自己的 os 上编译一个。
mvn clean package
-Pdist,native
-DskipTests
-Dtar
-Dbundle.snappy
-Dsnappy.lib=/usr/local/lib
-
so 文件存在,但路径不对
现在的版本,默认路径都能找得到 so 库。这个 Hadoop “Unable to load native-hadoop library for your platform” warning 里面介绍的大部分方法,都是在教怎么设置路径。真实原因很少会因为路径不对,不过这个答案靠谱 https://stackoverflow.com/a/30927689 ,也就是我们的情况 3 -
编译的版本,在我们的 os 上依赖库不全
遇到过这种,glibc 库版本不够:
$ ldd lib/native/libhadoop.so
lib/native/libhadoop.so: /lib64/libc.so.6: version `GLIBC_2.14'
not found
(required by lib/native/libhadoop.so)
linux-vdso.so.1 => (0x00007ffd1db6d000)
/$LIB/libonion.so
=> /lib64/libonion.so
(0x00007f5bfd37d000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f5bfce40000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f5bfcc23000)
libc.so.6 => /lib64/libc.so.6 (0x00007f5bfc88f000)
/lib64/ld-linux-x86-64.so.2 (0x00007f5bfd266000)
$ strings
/lib64/libc.so.6 |grep GLIBC_
可以看当前系统支持哪些版本的 glibc
但是 glibc 安装升级有风险,如果要安装 2.14 版本务必先做好测试。
14. 处理 missing blocks
hdfs 集群出现 missing block,无非就是 namenode 里还记录的 block 元数据信息,但是所有副本都丢失了。如果是同时挂了多个机器,或者损坏了多个机器上的磁盘,是有可能会出现。
遇到过 2 次人为产生 missing blocks:
-
kill 一个 datanode 进程,就出现 missing block
-
先设置所有文件的 replication 为 1,一小段时间后,再设置为 2
这两种情况都算是 bug,对应的文件确实无法 get 下来了。但第 1 中情况还好,经过排除日志,发现实际这些丢失的 blocks 本就接收到了删除命令,过一段时间后,missing block 一般会自动消失。第 2 中情况,是真的意外丢 block 了,比较严重。不要轻易把 replication 设置为 1,再改回去可能丢 block。
如果确认这些 missing block 可以消除,可以通过 fsck 命令手动处理:
// 如果missing blocks数不是很多,可以直接逐个delete
hdfs fsck file_name
-delete
// 如果missing blocks较多,可以从namenode上拿到corrupt块
hdfs fsck
/ -list-corruptfileblocks
-openforwrite
| egrep
-v
'^\.+$' | egrep
"MISSING|OPENFORWRITE" | grep
-o
"/[^ ]*" | sed
-e
"s/:$//" > missing_blocks.txt
15. 应该关注的告警
实际还有些许多问题,比如用户supergroup 权限问题、rack-aware.sh
文件缺失的问题,限于篇幅就不列举了。
问题是不断会出现的,但及时对大部分场景做到监控工具,能够提前发现问题。下面是整理并上线的关键告警指标:
-
datanode lastcontact
datanode 与 namenode 心跳监控。心跳时间长意味这这个 dn 没响应了,默认超过10m30s 没响应,dn会脱离集群。 -
namenode and datanode web probe
namenode 50070 与 datanode 50075 从外部探测,并且 datanode 会根据 include里面的地址自动增减。我们使用修改过了 telegraf http_response 插件,支持动态读取url,比如exec bash get_datanode_urls.sh
-
dirctory max files
单目录下的文件数告警。hdfs默认限制单目录下最大的文件数100万,由配置项dfs.namenode.fs-limits.max-directory-items
决定。
这个指标数据来源于 fsimage 目录画像分析。 -
transactions not merged
standby 未滚动的editlog数。长期未checkpoint会导致下次namenode启动消耗过多内存,甚至启动失败。 -
missing blocks
异常blocks数 -
test write file
在2个namenode节点上,定期使用 hdfs put/get 写入文件。如果失败会告警 -
non-active namenode
hdfs集群namenode有且只有一个active,一个standby。其它情况告警 -
cluster capacity
集群总体容量监控 -
node usage, ioutil
单个 datanode 磁盘空间使用率预警,ioutil持续5分钟大于95%预警。 -
failover occurs
hdfs namenode发生failover -
namenode heap size
namenode heap size使用比率。blocks数量多,内存使用越多。
到此,关于“怎么处理HDFS问题”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注网站,小编会继续努力为大家带来更多实用的文章!
内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/53570.html