R语言如何使用RcppEigen进行矩阵运算

技术R语言如何使用RcppEigen进行矩阵运算这篇文章主要介绍了R语言如何使用RcppEigen进行矩阵运算,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下

本文主要介绍如何用R语言使用RcppEigen进行矩阵运算,具有一定的参考价值。有兴趣的朋友可以参考一下。希望大家看完这篇文章后收获多多。让边肖带你去了解一下。

创建cpp文件

可以参考之前的博客来创建:让你的R代码更快——Rcpp简介

00-1010然后我们定义一个

R语言如何使用RcppEigen进行矩阵运算

做矩阵乘法求迹函数。

//[[rcpp :3360 depends(RcppEigen)]

# includeRcppEigen.h

使用命名空间特征;

使用命名空间TD;

//[[rcpp :3360 export]]

doublemyfun(MatrixXdX,matrix xdy){ 0

doubleZ

Z=(X .伴随()*Y)。trace();

coutZendl

returnZ

}前三行表示加载了Eigen库。

//[[rcpp :3360 depends(RcppEigen)]

# includeRcppEigen.h

使用命名空间特征;库中相邻的转置函数()和trace函数trace()都需要用到这个库。如果您没有在特征:后面的库中使用名称空间特征:伴随()和特征:trace()。

我们稍后使用命名空间标准;因为cout是需要的,所以它可以在运行函数时显示我们的中间变量,这也是一个有用的操作。当然,如果不需要,也没必要给变量空间命名:std。

以下是我们的功能:

//[[rcpp :3360 export]]

doublemyfun(MatrixXdX,matrix xdy){ 0

doubleZ

Z=(X .伴随()*Y)。trace();

coutZendl

returnZ

}///[[RCPP :3360导出]]是我们需要导出到r时添加的,双矩阵在Eigen中命名为MatrixXd,整数矩阵为matrix Xi;同样,对应的向量名是VectorXd和VectorXi。

里面的内容是我们根据公式打出来的函数。

我们来介绍一下Eigen库中的其他一些矩阵运算。

00-1010:艾根的简单快速引用。

代码示例

Matrixdouble,3,3A;//Fixedrowsandols . SameAsmatrix 3d。

Matrixdouble,3,DynamicB//Fixedrows,dynamicnbsp

;cols.
Matrix<double, Dynamic, Dynamic> C;   // Full dynamic. Same as MatrixXd.
Matrix<double, 3, 3, RowMajor> E;     // Row major; default is column-major.
Matrix3f P, Q, R;                     // 3x3 float matrix.
Vector3f x, y, z;                     // 3x1 float matrix.
RowVector3f a, b, c;                  // 1x3 float matrix.
VectorXd v;                           // Dynamic column vector of doubles
double s;

基础用法

// Basic usage
// Eigen          // Matlab           // comments
x.size()          // length(x)        // vector size
C.rows()          // size(C,1)        // number of rows
C.cols()          // size(C,2)        // number of columns
x(i)              // x(i+1)           // Matlab is 1-based
C(i,j)            // C(i+1,j+1)       //
A.resize(4, 4);   // Runtime error if assertions are on.
B.resize(4, 9);   // Runtime error if assertions are on.
A.resize(3, 3);   // Ok; size didn't change.
B.resize(3, 9);   // Ok; only dynamic cols changed.
                  
A << 1, 2, 3,     // Initialize A. The elements can also be
     4, 5, 6,     // matrices, which are stacked along cols
     7, 8, 9;     // and then the rows are stacked.
B << A, A, A;     // B is three horizontally stacked A's.
A.fill(10);       // Fill A with all 10's.

定义矩阵

// Eigen                                    // Matlab
MatrixXd::Identity(rows,cols)               // eye(rows,cols)
C.setIdentity(rows,cols)                    // C = eye(rows,cols)
MatrixXd::Zero(rows,cols)                   // zeros(rows,cols)
C.setZero(rows,cols)                        // C = zeros(rows,cols)
MatrixXd::Ones(rows,cols)                   // ones(rows,cols)
C.setOnes(rows,cols)                        // C = ones(rows,cols)
MatrixXd::Random(rows,cols)                 // rand(rows,cols)*2-1            // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols)                      // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high)          // linspace(low,high,size)'
v.setLinSpaced(size,low,high)               // v = linspace(low,high,size)'
VectorXi::LinSpaced(((hi-low)/step)+1,      // low:step:hi
                    low,low+step*(size-1))  //

对矩阵的一些基础操作1

// Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen                           // Matlab
x.head(n)                          // x(1:n)
x.head<n>()                        // x(1:n)
x.tail(n)                          // x(end - n + 1: end)
x.tail<n>()                        // x(end - n + 1: end)
x.segment(i, n)                    // x(i+1 : i+n)
x.segment<n>(i)                    // x(i+1 : i+n)
P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols)
P.row(i)                           // P(i+1, :)
P.col(j)                           // P(:, j+1)
P.leftCols<cols>()                 // P(:, 1:cols)
P.leftCols(cols)                   // P(:, 1:cols)
P.middleCols<cols>(j)              // P(:, j+1:j+cols)
P.middleCols(j, cols)              // P(:, j+1:j+cols)
P.rightCols<cols>()                // P(:, end-cols+1:end)
P.rightCols(cols)                  // P(:, end-cols+1:end)
P.topRows<rows>()                  // P(1:rows, :)
P.topRows(rows)                    // P(1:rows, :)
P.middleRows<rows>(i)              // P(i+1:i+rows, :)
P.middleRows(i, rows)              // P(i+1:i+rows, :)
P.bottomRows<rows>()               // P(end-rows+1:end, :)
P.bottomRows(rows)                 // P(end-rows+1:end, :)
P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols)
P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end)

基础操作2

// Of particular note is Eigen's swap function which is highly optimized.
// Eigen                           // Matlab
R.row(i) = P.col(j);               // R(i, :) = P(:, j)
R.col(j1).swap(mat1.col(j2));      // R(:, [j1 j2]) = R(:, [j2, j1])
// Views, transpose, etc;
// Eigen                           // Matlab
R.adjoint()                        // R'
R.transpose()                      // R.' or conj(R')       // Read-write
R.diagonal()                       // diag(R)               // Read-write
x.asDiagonal()                     // diag(x)
R.transpose().colwise().reverse()  // rot90(R)              // Read-write
R.rowwise().reverse()              // fliplr(R)
R.colwise().reverse()              // flipud(R)
R.replicate(i,j)                   // repmat(P,i,j)

矩阵基础运算1

// All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector.  Matrix-matrix.   Matrix-scalar.
y  = M*x;          R  = P*Q;        R  = P*s;
a  = b*M;          R  = P - Q;      R  = s*P;
a *= M;            R  = P + Q;      R  = P/s;
                   R *= Q;          R  = s*P;
                   R += Q;          R *= s;
                   R -= Q;          R /= s;

矩阵基础运算2

// Vectorized operations on each element independently
// Eigen                       // Matlab
R = P.cwiseProduct(Q);         // R = P .* Q
R = P.array() * s.array();     // R = P .* s
R = P.cwiseQuotient(Q);        // R = P ./ Q
R = P.array() / Q.array();     // R = P ./ Q
R = P.array() + s.array();     // R = P + s
R = P.array() - s.array();     // R = P - s
R.array() += s;                // R = R + s
R.array() -= s;                // R = R - s
R.array() < Q.array();         // R < Q
R.array() <= Q.array();        // R <= Q
R.cwiseInverse();              // 1 ./ R
R.array().inverse();           // 1 ./ R
R.array().sin()                // sin(R)
R.array().cos()                // cos(R)
R.array().pow(s)               // R .^ s
R.array().square()             // R .^ 2
R.array().cube()               // R .^ 3
R.cwiseSqrt()                  // sqrt(R)
R.array().sqrt()               // sqrt(R)
R.array().exp()                // exp(R)
R.array().log()                // log(R)
R.cwiseMax(P)                  // max(R, P)
R.array().max(P.array())       // max(R, P)
R.cwiseMin(P)                  // min(R, P)
R.array().min(P.array())       // min(R, P)
R.cwiseAbs()                   // abs(R)
R.array().abs()                // abs(R)
R.cwiseAbs2()                  // abs(R.^2)
R.array().abs2()               // abs(R.^2)
(R.array() < s).select(P,Q );  // (R < s ? P : Q)
R = (Q.array()==0).select(P,R) // R(Q==0) = P(Q==0)
R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P)   // with: scalar func(const scalar &x);

求最小最大值、迹等

// Reductions.
int r, c;
// Eigen                  // Matlab
R.minCoeff()              // min(R(:))
R.maxCoeff()              // max(R(:))
s = R.minCoeff(&r, &c)    // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c)    // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum()                   // sum(R(:))
R.colwise().sum()         // sum(R)
R.rowwise().sum()         // sum(R, 2) or sum(R')'
R.prod()                  // prod(R(:))
R.colwise().prod()        // prod(R)
R.rowwise().prod()        // prod(R, 2) or prod(R')'
R.trace()                 // trace(R)
R.all()                   // all(R(:))
R.colwise().all()         // all(R)
R.rowwise().all()         // all(R, 2)
R.any()                   // any(R(:))
R.colwise().any()         // any(R)
R.rowwise().any()         // any(R, 2)

点乘等

// Dot products, norms, etc.
// Eigen                  // Matlab
x.norm()                  // norm(x).    Note that norm(R) doesn't work in Eigen.
x.squaredNorm()           // dot(x, x)   Note the equivalence is not true for complex
x.dot(y)                  // dot(x, y)
x.cross(y)                // cross(x, y) Requires #include <Eigen/Geometry>

特征值与特征向量

// Eigenvalue problems
// Eigen                          // Matlab
A.eigenvalues();                  // eig(A);
EigenSolver<Matrix3d> eig(A);     // [vec val] = eig(A)
eig.eigenvalues();                // diag(val)
eig.eigenvectors();               // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>

形式转换

 Type conversion
// Eigen                  // Matlab
A.cast<double>();         // double(A)
A.cast<float>();          // single(A)
A.cast<int>();            // int32(A)
A.real();                 // real(A)
A.imag();                 // imag(A)
// if the original type equals destination type, no work is done

矩阵初始化0

// Note that for most operations Eigen requires all operands to have the same type:
MatrixXf F = MatrixXf::Zero(3,3);
A += F;                // illegal in Eigen. In Matlab A = A+F is allowed
A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly)

Map等操作

// Eigen can map existing memory into Eigen matrices.
float array[3];
Vector3f::Map(array).fill(10);            // create a temporary Map over array and sets entries to 10
int data[4] = {1, 2, 3, 4};
Matrix2i mat2x2(data);                    // copies data into mat2x2
Matrix2i::Map(data) = 2*mat2x2;           // overwrite elements of data with 2*mat2x2
MatrixXi::Map(data, 2, 2) += mat2x2;      // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time)

求解Ax = b

// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b));  // A sym. p.s.d.    #include <Eigen/Cholesky>
x = A.llt() .solve(b));  // A sym. p.d.      #include <Eigen/Cholesky>
x = A.lu()  .solve(b));  // Stable and fast. #include <Eigen/LU>
x = A.qr()  .solve(b));  // No pivoting.     #include <Eigen/QR>
x = A.svd() .solve(b));  // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt()  -> .matrixL()
// .lu()   -> .matrixL() and .matrixU()
// .qr()   -> .matrixQ() and .matrixR()
// .svd()  -> .matrixU(), .singularValues(), and .matrixV()

感谢你能够认真阅读完这篇文章,希望小编分享的“R语言如何使用RcppEigen进行矩阵运算”这篇文章对大家有帮助,同时也希望大家多多支持,关注行业资讯频道,更多相关知识等着你来学习!

内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/73741.html

(0)

相关推荐

  • mysql如何查询月份

    技术mysql如何查询月份这篇文章给大家分享的是有关mysql如何查询月份的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。 mysql查询月份的方法:1、通过“sel

    攻略 2021年11月26日
  • oracle存储过程怎么创建日志表(oracle添加归档日志文件)

    技术Oracle日志组中如何添加冗余文件和日志组这篇文章将为大家详细讲解有关Oracle日志组中如何添加冗余文件和日志组,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。rac中需要指定t

    攻略 2021年12月17日
  • Python源代码的编制技巧是什么

    技术Python源代码的编制技巧是什么本篇文章为大家展示了Python源代码的编制技巧是什么,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。下面进行详细说明Python源代码的编程

    攻略 2021年10月28日
  • 怎么查询mysql的编码格式(mysql编码查看方式)

    技术mysql怎么查询编码这篇文章主要为大家展示了“mysql怎么查询编码”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“mysql怎么查询编码”这篇文章吧。

    攻略 2021年12月14日
  • 灯笼的简单做法,小灯笼的手工DIY做法

    技术灯笼的简单做法,小灯笼的手工DIY做法1、首先要准备的工具有:彩纸、裁刀、钳子和一些铁丝,当然还有锥子或者是针,会被用来钻孔灯笼的简单做法。2、彩纸需要是两种不同颜色的,大小是7/4英寸*9英寸的。(这里单位是英寸,

    生活 2021年10月27日
  • 怎么正确使用RabbitMQ异步编程

    技术怎么正确使用RabbitMQ异步编程这篇文章主要介绍“怎么正确使用RabbitMQ异步编程”,在日常操作中,相信很多人在怎么正确使用RabbitMQ异步编程问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法

    攻略 2021年10月23日