TensorRT——INT8推理
原理
为什么使用INT8推理:更高的处理吞吐量/fps和更低的内存消耗(8位vs 32位)
将FP32型号转换为INT8型号的挑战:较低的动态范围和精度
考虑32位浮点可以在区间[-3.4e38,3.40e38]内表示大约40亿个数字。这个可表示数字的区间也被称为the dynamic-range。两个相邻的可表示数之间的距离是the precision of the representation。—— 《Achieving FP32 Accuracy for INT8 Inference Using Quantization Aware Training with NVIDIA TensorRT》
如何将FP32量化成INT8:最简单的方法是对称线性量化。每个张量可以将量化的INT8值乘以与之相关的标量因子。那么如何确定这个标量因子呢?
对于权重,TensorRT使用左侧图片进行映射,不会带来精度下降;对于激活,TensorRT按照上图右边的方式量化INT8,这就面临了一个新的问题。如何为每个激活张量选择最佳|阈值(这实际上是校准的过程)
选择不同的阈值相当于不同的编码方法。从信息论的角度来看,我们希望选择一种编码方法来最小化编码前后的信息损失,我们可以用KL散度来衡量这种信息损失。
激活校准
实践
为了使用TensorRT的INT8推理,我们需要编写自己的校准器类,然后告诉builder使用这个校准器通过Builder-Set INT8校准器来校准数据,从而减少量化误差。
至于如何校准构建器,构建器类实现了以下功能:
Builder首先调用校准器类的getBatchSize()来获取输入批处理的大小。
然后builder反复调用getBatch()获取输入数据进行校准。读入的批处理数据的大小必须与getBatchSize()获得的大小相同。如果没有输入批处理数据,getBatch()将返回false。
Builder将首先构建一个32位引擎,对校准集进行正向推理,并记录每一层激活的直方图。
根据得到的直方图建立校准表。
根据获得的校准表和网络定义创建一个8位引擎。
然而,校准过程非常耗时。通过缓存校准表,可以多次有效地构建相同的网络。要实现校准表的缓存功能,需要在校准器类中实现writeCalibrationCache()和readCalibrationCache()两个函数。
总而言之,要实现INT8的Engine,开发人员需要实现一个校准器类,它需要覆盖以下函数:
getBatchSize
getBatch
写校准缓存(可选)
读取校准缓存(可选)
这个校准器类是一个iint8校准器,TensorRT提供了四个iint8校准器的派生类(IInt8EntropyCalibrator
、IInt8EntropyCalibrator2、IInt8MinMaxCalibrator、IInt8LegacyCalibrator,我们例子中的calibrator继承自IInt8EntropyCalibrator
.
#include algorithm
#include assert.h
#include cmath
#include cuda_runtime_api.h
#include fstream
#include iomanip
#include iostream
#include sstream
#include sys/stat.h
#include time.h
#include opencv2/opencv.hpp
#include "NvInfer.h"
#include "NvOnnxParser.h"
#include "argsParser.h"
#include "logger.h"
#include "common.h"
#include "image.hpp"
#define DebugP(x) std::cout "Line" __LINE__ " " #x "=" x std::endl
using namespace nvinfer1;
Logger gLogger;
// LogStreamConsumer gLogError;
static const int INPUT_H = 224;
static const int INPUT_W = 224;
static const int INPUT_C = 3;
static const int OUTPUT_SIZE = 1000;
const char* INPUT_BLOB_NAME = "input";
const char* OUTPUT_BLOB_NAME = "output";
const std::string gSampleName = "TensorRT.sample_onnx_image";
const std::string onnxFile = "resnet50.onnx";
const std::string engineFile = "../data/resnet50_int8.trt"
const std::string calibFile = "../data/calibration_img.txt"
samplesCommon::Args gArgs;
std::vectorfloat prepareImage(cv::Mat img) {
int c = 3;
int h = INPUT_H;
int w = INPUT_W;
// 1 Resize the source Image to a specific size(这里保持原图长宽比进行resize)
float scale = std::min(float(w) / img.cols, float(h) / img.rows);
auto scaleSize = cv::Size(img.cols * scale, img.rows * scale);
// Convert BGR to RGB
cv::Mat rgb;
cv::cvtColor(img, rgb, CV_BGR2RGB);
cv::Mat resized;
cv::resize(rgb, resized, scaleSize, 0, 0, cv::INTER_CUBIC);
// 2 Crop Image(将resize后的图像放在(H, W, C)的中心, 周围用127做padding)
cv::Mat cropped(h, w, CV_8UC3, 127)
// Rect(left_top_x, left_top_y, width, height)
cv::Rect rect((w - scaleSize.width) / 2, (h - scaleSize.height) / 2, scaleSize.width, scaleSize.height);
resize.copyTo(cropped(rect));
// 3 Type conversion, convert unsigned int 8 to float 32
cv::Mat img_float;
cropped.convertTo(img_float, CV_32FC3, 1.f / 255.0);
// HWC to CHW, and convert Mat to std::vectorfloat
std::vectorcv::Mat input_channels(c);
cv::split(cropped, input_channels);
std::vectorfloat result(h * w * c);
auto data = result.data();
int channelLength = h * w;
for (int i = 0; i c; ++i) {
memcpy(data, input_channels[i].data, channelLength * sizeof(float));
data += channelLength;
}
return result;
}
// 实现自己的calibrator类
namespace nvinfer1 {
class int8EntropyCalibrator: public nvinfer1::IInt8EntropyCalibrator {
public:
int8EntropyCalibrator(const int batchSize,
const std::string imgPath,
const std::string calibTablePath);
virtual ~int8EntropyCalibrator();
int getBatchSize() const override { return batchSize; }
bool getBatch(void *bindings[], const char *names[], int nbBindings) override;
const void *readCalibationCache(std::size_t length) override;
void writeCalibrationCache(const void *ptr, std::size_t length) override;
private:
int batchSize;
size_t inputCount;
size_t imageIndex;
std::string calibTablePath;
std::vectorstd::string imgPaths;
float *batchData { nullptr };
void *deviceInput { nullptr };
bool readCache;
std::vectorchar calibrationCache;
};
int8EntropyCalibrator::int8EntropyCalibrator(const int batchSize, const std::string imgPath,
const std::string calibTablePath) : batchSize(batchSize), calibTablePath(calibTablePath), imageIndex(0) {
int inputChannel = 3;
int inputH = 256;
int inputW = 256;
inputCount = batchSize * inputChannel * inputH * inputW;
std::fstream f(imgPath);
if (f.is_open()) {
std::string temp;
while( std::getline(f, temp) ) imgPaths.push_back(temp);
}
int len = imgPaths.size();
for( int i = 0; i len; i++) {
std::cout imgPaths[i] std::endl;
}
// allocate memory for a batch of data, batchData is for CPU, deviceInput is for GPU
batchData = new flowt[inputCount];
CHECK(cudaMalloc(deviceInput, inputCount * sizeof(float)));
}
IInt8EntropyCalibrator::~IInt8EntropyCalibrator() {
CHECK(cudaFree(deviceInput));
if (batchData) {
delete[] batchData;
}
}
bool int8EntropyCalibrator::getBatch(void **bindings, const char **names, int nbBindings) {
std::cout imageIndex " " batchSize std::endl;
std::cout imgPaths.size() std::endl;
if (imageIndex + batchSize ing(imgPaths.size()))
return false;
// load batch
float *ptr = batchData;
for (size_t j = imageIndex; j imageIndex + batchSize; ++j) {
cv::Mat img = cv::imread(imgPaths[j]);
std::vectorfloat inputData = prepareImage(img);
if (inputData.size() != inputCount) {
std::cout "InputSize Error" std::endl;
return false;
}
assert(inputData.size() == inputCount);
memcpy(ptr, inputData.data(), (int)(inputData.size()) * sizeof(float));
ptr += inputData.size();
std::cout "load image " imgPaths[j] " " (j + 1) * 100. / imgPaths.size() "%" std::endl;
}
imageIndex += batchSize;
// copy bytes from Host to Device
CHECK(cudaMemcpy(deviceInput, batchData, inputCount * sizeof(float), cudaMemcpyHostToDevice));
bindings[0] = deviceInput;
return true;
}
const void* int8Entropycalibrator::readCalibrationCache(std::size_t length) {
calibrationCache.clear();
std::ifstream input(calibTablePath, std::ios::binary);
input std::noskipws;
if (readCache input.good()) {
std::copy(std::istream_iteratorchar(input), std::istream_iteratorchar(),
std::back_inserter(calibrationCache));
}
length = calibrationCache.size();
return length calibrationCache[0] : nullptr;
}
void int8EntropyCalibrator::writeCalibrationCache(const void *cache, std::size_t length) {
std::ofstream output(calibTablePath, std::ios::binary);
output.write(reinterpret_castconst char*(cache), length);
}
}
bool onnxToTRTModel(const std::string modelFile, // name of the onnx model
unsigned int maxBatchSize, // batch size - NB must be at least as large as the batch we want to run with
IHostMemory* trtModelStream, // output buffer for the TensorRT model
const std::string engineFile)
// create the builder
IBuilder* builder = createInferBuilder(gLogger.getTRTLogger());
assert(builder != nullptr);
// create the config
auto config = builder-createBuilderConfig();
assert(config != nullptr);
if (! builder-platformHasFastInt8()) {
std::cout "builder platform do not support Int8" std::endl;
return false;
}
const auto explicitBatch = 1U static_castuint32_t(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
std::cout "explicitBatch is: " explicitBatch std::endl;
nvinfer1::INetworkDefinition* network = builder-createNetworkV2(explicitBatch);
auto parser = nvonnxparser::createParser(*network, gLogger.getTRTLogger());
//Optional - uncomment below lines to view network layer information
//config-setPrintLayerInfo(true);
//parser-reportParsingInfo();
if ( !parser-parseFromFile( locateFile(modelFile, gArgs.dataDirs).c_str(), static_castint(gLogger.getReportableSeverity()) ) )
{
gLogError "Failure while parsing ONNX file" std::endl;
return false;
}
// config
config-setAvgTimingIterations(1);
config-setMinTimingIterations(1);
config-setMaxWorkspaceSize(1_GiB);
// Build the engine
builder-setMaxBatchSize(maxBatchSize);
//builder-setMaxWorkspaceSize(1 20);
builder-setMaxWorkspaceSize(10 20);
nvinfer1::int8EntropyCalibrator *calibrator = nullptr;
if (calibFile.size() 0 ) calibrator = new nvinfer1::int8EntropyCalibrator(maxBatchSize, calibFile, "");
// builder-setFp16Mode(gArgs.runInFp16);
// builder-setInt8Mode(gArgs.runInInt8);
// 对builder进行设置, 告诉它使用Int8模式, 并利用编写好的calibrator类进行calibration
builder-setInt8Mode(true);
builder-setInt8Calibrator(calibrator);
// if (gArgs.runInInt8)
// {
// samplesCommon::setAllTensorScales(network, 127.0f, 127.0f);
// }
config-setFlag(BuiderFlag::kINT8);
config-setInt8Calibrator(calibrator);
// 如果使用了calibrator, 应该参考https://github.com/enazoe/yolo-tensorrt/blob/dd4cb522625947bfe6bfbdfbb6890c3f7558864a/modules/yolo.cpp, 把下面这行注释掉,使用数据集校准得到dynamic range;否则使用下面这行手动设置dynamic range。
// setAllTensorScales函数在官方TensorRT开源代码里有
samplesCommon::setAllTensorScales(network, 127.0f, 127.0f);
// samplesCommon::enableDLA(builder, gArgs.useDLACore);
ICudaEngine* engine = builder-buildCudaEngine(*network);
assert(engine);
if (calibrator) {
delete calibrator;
calibrator = nullptr;
}
// we can destroy the parser
parser-destroy();
// serialize the engine, then close everything down
trtModelStream = engine-serialize();
std::ofstream file;
file.open(engineFile, std::ios::binary | std::ios::out);
file.write((const char*)data-data(), data-size());
file.close();
engine-destroy();
config-destroy();
network-destroy();
builder-destroy();
return true;
}
void doInference(IExecutionContext context, float* input, float* output, int batchSize)
{
const ICudaEngine engine = context.getEngine();
// input and output buffer pointers that we pass to the engine - the engine requires exactly IEngine::getNbBindings(),
// of these, but in this case we know that there is exactly one input and one output.
assert(engine.getNbBindings() == 2);
void* buffers[2];
// In order to bind the buffers, we need to know the names of the input and output tensors.
// note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
DebugP(inputIndex); DebugP(outputIndex);
// create GPU buffers and a stream
CHECK(cudaMalloc(buffers[inputIndex], batchSize * INPUT_C * INPUT_H * INPUT_W * sizeof(float)));
CHECK(cudaMalloc(buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float)));
cudaStream_t stream;
CHECK(cudaStreamCreate(stream));
// DMA the input to the GPU, execute the batch asynchronously, and DMA it back:
CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * INPUT_C * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
// release the stream and the buffers
cudaStreamDestroy(stream);
CHECK(cudaFree(buffers[inputIndex]));
CHECK(cudaFree(buffers[outputIndex]));
}
//!
//! \brief This function prints the help information for running this sample
//!
void printHelpInfo()
{
std::cout "Usage: ./sample_onnx_mnist [-h or --help] [-d or --datadir=path to data directory] [--useDLACore=int]\n";
std::cout "--help Display help information\n";
std::cout "--datadir Specify path to a data directory, overriding the default. This option can be used multiple times to add multiple directories. If no data directories are given, the default is to use (data/samples/mnist/, data/mnist/)" std::endl;
std::cout "--useDLACore=N Specify a DLA engine for layers that support DLA. Value can range from 0 to n-1, where n is the number of DLA engines on the platform." std::endl;
std::cout "--int8 Run in Int8 mode.\n";
std::cout "--fp16 Run in FP16 mode." std::endl;
}
int main(int argc, char** argv)
{
bool argsOK = samplesCommon::parseArgs(gArgs, argc, argv);
if (gArgs.help)
{
printHelpInfo();
return EXIT_SUCCESS;
}
if (!argsOK)
{
std::cout "Invalid arguments" std::endl;
// gLogError "Invalid arguments" std::endl;
printHelpInfo();
return EXIT_FAILURE;
}
if (gArgs.dataDirs.empty())
{
gArgs.dataDirs = std::vectorstd::string{"data/"};
}
auto sampleTest = gLogger.defineTest(gSampleName, argc, const_castconst char**(argv));
gLogger.reportTestStart(sampleTest);
// create a TensorRT model from the onnx model and serialize it to a stream
nvinfer1::IHostMemory* trtModelStream{nullptr};
if (!onnxToTRTModel(onnxFile, 1, trtModelStream))
gLogger.reportFail(sampleTest);
assert(trtModelStream != nullptr);
std::cout "Successfully parsed ONNX file!!!!" std::endl;
std::cout "Start reading the input image!!!!" std::endl;
cv::Mat image = cv::imread(locateFile("test.jpg", gArgs.dataDirs), cv::IMREAD_COLOR);
if (image.empty()) {
std::cout "The input image is empty!!! Please check....."std::endl;
}
DebugP(image.size());
cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
cv::Mat dst = cv::Mat::zeros(INPUT_H, INPUT_W, CV_32FC3);
cv::resize(image, dst, dst.size());
DebugP(dst.size());
float* data = normal(dst);
// deserialize the engine
IRuntime* runtime = createInferRuntime(gLogger);
assert(runtime != nullptr);
if (gArgs.useDLACore = 0)
{
runtime-setDLACore(gArgs.useDLACore);
}
ICudaEngine* engine = runtime-deserializeCudaEngine(trtModelStream-data(), trtModelStream-size(), nullptr);
assert(engine != nullptr);
trtModelStream-destroy();
IExecutionContext* context = engine-createExecutionContext();
assert(context != nullptr);
float prob[OUTPUT_SIZE];
typedef std::chrono::high_resolution_clock Time;
typedef std::chrono::durationdouble, std::ratio1, 1000 ms;
typedef std::chrono::durationfloat fsec;
double total = 0.0;
// run inference and cout time
auto t0 = Time::now();
doInference(*context, data, prob, 1);
auto t1 = Time::now();
fsec fs = t1 - t0;
ms d = std::chrono::duration_castms(fs);
total += d.count();
// destroy the engine
context-destroy();
engine-destroy();
runtime-destroy();
std::cout std::endl "Running time of one image is:" total "ms" std::endl;
std::cout "Output:\n";
for (int i = 0; i OUTPUT_SIZE; i++)
{
gLogInfo prob[i] " ";
}
std::cout std::endl;
return gLogger.reportTest(sampleTest, true);
}
除了上面这个实现外,官方的sampleINT8.cpp也非常值得参考。
参考资料:
- PPT《8-bit inference with TensorRT》
- Video 《8-bit inference with TensorRT》
内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/84599.html