本文主要给大家展示“Python的主要应用方向有哪些”,简单易懂,组织清晰,希望能帮你解决疑惑。让边肖带领大家学习《Python的主要应用方向有哪些》一文。
web开发
基于Python的Web框架(如Django和Flask)在最近的Web开发中非常流行。
这些网络框架帮助您用Python创建服务器端代码(后端代码)。这是运行在服务器上的代码,而不是用户设备和浏览器上的代码(前端代码)。如果你不熟悉后端代码和前端代码的区别,请参考我下面的脚注。
但是等等,为什么我需要一个web框架呢?
这是因为web框架更容易构建通用的后端逻辑。这包括将不同的网址映射到Python代码块、处理数据库和生成用户可以在浏览器上看到的HTML文件。
我应该使用哪种Python web框架?
Django和Flask是两种最流行的Python网络框架。如果你刚开始,我建议你用其中一个。
Django和Flask有什么不同?
主要比较:
Flask提供简单、灵活和精细的控制。它是不受约束的(它让你决定如何实现事情)。
Django提供了全面的体验。为您的应用程序和项目提供了管理面板、数据库接口、对象关系映射和目录结构。
你应该选择:
如果您关心经验和学习机会,或者您想要更多地控制使用哪些组件(例如,您想要使用哪些数据库以及如何与它们交互),那么您可以使用Flask。
姜戈如果你专注于最终产品。尤其是如果你正在处理一个简单的应用程序,比如新闻网站、电子商店或博客,并且你希望总是有一个单一而明显的做事方式。
换句话说,如果你是初学者,那么Flask可能是一个更好的选择,因为它需要处理的组件更少。另外,如果想要更多的定制,Flask是更好的选择。
另一方面,如果你想直接构建一些东西,Django可能会让你做得更快。
数据科学
首先,让我们复习一下什么是机器学习
我认为解释机器学习的最好方法是给你一个简单的例子。
假设你想开发一个程序来自动检测图片中的内容。
因此,根据下图(图1),您希望您的程序识别出它是一只狗。
图1
考虑下面的另一个(图2),您希望您的程序意识到它是一个表。
图2
你可能会说,我可以写一些代码来实现它。例如,如果图片中有许多浅棕色像素,那么我们可以说它是一只狗。或者,你可以找出如何检测图形。
片的边缘。然后,你可能会说,如果有很多条直边,那么它就是一个表格。
然而,这种方法很快就会变得棘手。如果照片里有一只没有棕色毛发的白狗呢?如果这张图只显示了桌子的圆形部分呢?
什么是机器学习。
机器学习通常实现自动检测给定输入中的模式的算法。
比如说,你可以给一个机器学习算法提供1000张狗的图片和1000张桌子的图片。然后,它会学习狗和桌子之间的区别。当你给它一张狗或桌子的新图片时,它就能认出这是哪一张。
我认为这有点类似于婴儿学习新事物的方式。一个婴儿怎么知道一个东西长得像狗,而另一个东西长得像桌子?可能是从一堆例子中得到的。
你可能不会明确地告诉婴儿,“如果什么东西是毛茸茸的,长着浅棕色的毛,那么它可能是一只狗。”你可能会说:“那是一只狗。”这也是一只狗。这是一张桌子。那张也是桌子。”
机器学习算法也是如此。你可以把同样的想法应用到:
-
推荐系统(想想YouTube、Amazon和Netflix)
-
人脸识别
-
语音识别
在其他应用程序中。你可能听说过的流行的机器学习算法包括:
-
神经网络
-
深度学习
-
支持向量机
-
随机森林
您可以使用上面的任何一种算法来解决我前面解释的图片标记问题。
机器学习中的Python
Python有很多流行的机器学习库和框架。其中最受欢迎的两个是scikit-learn和TensorFlow。
-
scikit-learn内置了一些更流行的机器学习算法。我上面提到了其中的一些。
-
TensorFlow更像是一个底层库,它允许您构建自定义机器学习算法。
如果你刚刚开始一个机器学习项目,我建议你先从scikit-learn开始。如果你开始遇到效率问题,那么我将开始研究TensorFlow。
我应该如何学习机器学习?
为了学习机器学习的基础知识,我推荐斯坦福吴恩达的机器学习课程。
https://www.coursera.org/learn/machine-learning
请注意,你需要微积分和线性代数的基础知识来理解这些课程中的一些材料。
然后,在Kaggle实践您从这些课程中学到的内容。这是一个网站,人们在这里竞争,为一个给定的问题建立最好的机器学习算法。他们也有很好的初学者教程。
使用Python进行数据分析/可视化
用于数据可视化的最流行的库之一是Matplotlib。这是一个很好的入门库,因为:这很容易开始
一些其他的库,比如seaborn就是基于它的。因此,学Matplotlib将帮助您以后学习这些其他库。
脚本是什么?
脚本编制通常是指编写用于使简单任务自动化的小程序。
那么,让我给你们一个我个人经历的例子。
我曾经在日本的一家小公司工作,那里有一个电子邮件支持系统。这是一个我们用来回复客户通过电子邮件发送给我们的问题的系统。
当我在那里工作的时候,我的任务是计算包含特定关键词的电子邮件的数量,这样我们就可以分析收到的电子邮件。我们可以手动完成它,但是我写了一个简单的程序/简单的脚本来自动化这个任务。
实际上,我们当时使用的是Ruby,但是Python也是完成这种任务的好语言。Python适合这种类型的任务,主要是因为它有相对简单的语法和易于编写。它还可以快速地用它编写一些小的东西并对其进行测试。
游戏呢?
你可以使用PyGame库来开发游戏,但它并不是最流行的游戏引擎。你可以用它来建立一个兴趣项目,但我个人不会选择它,如果你是认真的游戏开发。
相反,我建议您从Unity开始使用c#,它是最流行的游戏引擎之一。它允许你在许多平台上创建游戏,包括Mac, Windows, iOS和Android。
以上是“Python的主要应用方向有哪些”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!
内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/85714.html